Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries

eScience - Tập 1 - Trang 194-202 - 2021
Bin Tang1, Yibo Zhao2, Zhiyi Wang2, Shiwei Chen2, Yifan Wu2, Yuming Tseng2, Lujiang Li3, Yunlong Guo2, Zhen Zhou1,4, Shou-Hang Bo2,5
1Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
2University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 800 Dong Chuan Rd., Minhang District, Shanghai, 200240, PR China
3Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, PR China
4School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, PR China
5School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Rd., Minhang District, Shanghai, 200240, PR China

Tài liệu tham khảo

Shen, 2019, Solid-state electrolyte considerations for electric vehicle batteries, Sustain. Energy Fuels, 3, 1647, 10.1039/C9SE00119K Janek, 2016, A solid future for battery development, Nat. Energy, 1, 1, 10.1038/nenergy.2016.141 Chen, 2020, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces, Chem. Rev., 120, 6820, 10.1021/acs.chemrev.9b00268 Zhang, 2018, New horizons for inorganic solid state ion conductors, Energy Environ. Sci., 11, 1945, 10.1039/C8EE01053F Zhang, 2021, Hunting sodium dendrites in NASICON-based solid-state electrolytes, Energy Mater. Adv., 2021, 1, 10.34133/2021/9870879 Rees, 2021, Imaging sodium dendrite Growth in all-solid-state sodium batteries using 23Na T2 -weighted magnetic resonance imaging, Angew. Chem. Int. Ed., 60, 2110, 10.1002/anie.202013066 Wu, 2021, A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries, Nat. Commun., 12, 1256, 10.1038/s41467-021-21488-7 Cheng, 2011, Functional materials for rechargeable batteries, Adv. Mater., 23, 1695, 10.1002/adma.201003587 Wang, 2021, Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes, J. Am. Chem. Soc., 143, 2829, 10.1021/jacs.0c12051 Aima Technology and Natrium Science and Technology Department Tian, 2020, Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization, Chem. Rev., 121, 1623, 10.1021/acs.chemrev.0c00767 Lee, 2019, Sodium metal anodes: emerging solutions to dendrite growth, Chem. Rev., 119, 5416, 10.1021/acs.chemrev.8b00642 Zhao, 2020, Rational design of layered oxide materials for sodium-ion batteries, Science, 370, 708, 10.1126/science.aay9972 Li, 2021, Solid-State electrolytes for sodium metal batteries, Energy Fuel., 35, 9063, 10.1021/acs.energyfuels.1c00347 Lu, 2018, Electrolyte and interface engineering for solid-state sodium batteries, Joule, 2, 1747, 10.1016/j.joule.2018.07.028 Tang, 2020, Critical interface between inorganic solid-state electrolyte and sodium metal, Mater. Today, 41, 200, 10.1016/j.mattod.2020.08.016 Tian, 2019, Reactivity-guided interface design in Na metal solid-state batteries, Joule, 3, 1037, 10.1016/j.joule.2018.12.019 Tian, 2017, Compatibility issues between electrodes and electrolytes in solid-state batteries, Energy Environ. Sci., 10, 1150, 10.1039/C7EE00534B Xiao, 2019, Understanding interface stability in solid-state batteries, Nat. Rev. Mater., 5, 105, 10.1038/s41578-019-0157-5 Wu, 2020, Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries, Energy Environ. Sci., 14, 12, 10.1039/D0EE02241A Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030, 10.1038/nenergy.2016.30 Banerjee, 2016, Na3SbS4 : a solution processable sodium superionic Conductor for all-solid-state sodium-ion batteries, Angew. Chem. Int. Ed., 55, 9634, 10.1002/anie.201604158 Wang, 2016, An air-stable Na3SbS4 superionic conductor Prepared by a Rapid and economic synthetic procedure, Angew. Chem. Int. Ed., 55, 8551, 10.1002/anie.201601546 Zhang, 2016, Vacancy-contained tetragonal Na3SbS4 superionic conductor, Adv. Sci., 3, 1600089, 10.1002/advs.201600089 Zhang, 2018, Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries, Electrochim. Acta, 259, 100, 10.1016/j.electacta.2017.10.173 Wang, 2022, Enhanced electrochemical performance enabled by ionic-liquid-coated Na3SbS4 electrolyte encapsulated in flexible filtration membrane, Chem. Eng. J., 428, 132094, 10.1016/j.cej.2021.132094 Gover, 2006, The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3, Solid State Ionics, 177, 1495, 10.1016/j.ssi.2006.07.028 Wolfenstine, 2017, Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review, Ionics, 24, 1271, 10.1007/s11581-017-2314-4 Zhang, 2019, Dendrites in lithium metal anodes: suppression, regulation, and elimination, Accounts Chem. Res., 52, 3223, 10.1021/acs.accounts.9b00437 Sun, 2021, Visualizing lithium dendrite formation within solid-state electrolytes, ACS Energy Lett., 6, 451, 10.1021/acsenergylett.0c02314 Mei, 2020, A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes, Mater. Today Commun., 24, 101004, 10.1016/j.mtcomm.2020.101004 Bachman, 2016, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction, Chem. Rev., 116, 140, 10.1021/acs.chemrev.5b00563 Gao, 2020, Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors, Chem. Rev., 120, 5954, 10.1021/acs.chemrev.9b00747 Fergus, 2012, Ion transport in sodium ion conducting solid electrolytes, Solid State Ionics, 227, 102, 10.1016/j.ssi.2012.09.019 Zhao, 2020, Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures, Proc. Natl. Acad. Sci. U.S.A., 117, 26053, 10.1073/pnas.2004576117 Munoz, 2018, Review of recent nuclear magnetic resonance studies of ion transport in polymer electrolytes, Membranes, 8, 10.3390/membranes8040120 Zou, 2020, Mobile ions in composite solids, Chem. Rev., 120, 4169, 10.1021/acs.chemrev.9b00760 Fragiadakis, 2009, Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide), J. Chem. Phys., 130, 10.1063/1.3063659 Huang, 2020, Melt crystallization and segmental dynamics of poly(ethylene oxide) confined in a solid electrolyte composite, J. Polym. Sci., 58, 466, 10.1002/pol.20190095 Marchiori, 2020, Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts, Chem. Mater., 32, 7237, 10.1021/acs.chemmater.0c01489 Fu, 2020, Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries, Nat. Mater., 19, 758, 10.1038/s41563-020-0655-2 Ohno, 2020, How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study, ACS Energy Lett., 5, 910, 10.1021/acsenergylett.9b02764 Breuer, 2018, Rapid Li ion dynamics in the interfacial regions of nanocrystalline solids, J. Phys. Chem. Lett., 9, 2093, 10.1021/acs.jpclett.8b00418 Pang, 2018, Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating, Proc. Natl. Acad. Sci. U.S.A., 115, 12389, 10.1073/pnas.1809187115 Deng, 2015, Elastic properties of alkali superionic conductor electrolytes from first principles calculations, J. Electrochem. Soc., 163, A67, 10.1149/2.0061602jes Monroe, 2005, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152, A396, 10.1149/1.1850854 Monroe, 2004, The effect of interfacial deformation on electrodeposition kinetics, J. Electrochem. Soc., 151, A880, 10.1149/1.1710893 Singman, 1984, Atomic volume and allotropy of the elements, J. Chem. Educ., 61, 137, 10.1021/ed061p137 Ahmad, 2017, Stability of electrodeposition at solid-solid interfaces and implications for metal anodes, Phys. Rev. Lett., 119, 056003, 10.1103/PhysRevLett.119.056003 Marcus, 2002, Ion volumes: a comparison, Dalton Trans., 3795, 10.1039/b205785a Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32, 751, 10.1107/S0567739476001551 Lacivita, 2019, Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries, J. Mater. Chem., 7, 8144, 10.1039/C8TA10498K Matios, 2019, Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability, ACS Appl. Mater. Interfaces, 11, 5064, 10.1021/acsami.8b19519 Ruan, 2019, Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery, Ceram. Int., 45, 1770, 10.1016/j.ceramint.2018.10.062 Duchene, 2017, A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture, Chem. Commun., 53, 4195, 10.1039/C7CC00794A