Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries
Tài liệu tham khảo
Shen, 2019, Solid-state electrolyte considerations for electric vehicle batteries, Sustain. Energy Fuels, 3, 1647, 10.1039/C9SE00119K
Janek, 2016, A solid future for battery development, Nat. Energy, 1, 1, 10.1038/nenergy.2016.141
Chen, 2020, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces, Chem. Rev., 120, 6820, 10.1021/acs.chemrev.9b00268
Zhang, 2018, New horizons for inorganic solid state ion conductors, Energy Environ. Sci., 11, 1945, 10.1039/C8EE01053F
Zhang, 2021, Hunting sodium dendrites in NASICON-based solid-state electrolytes, Energy Mater. Adv., 2021, 1, 10.34133/2021/9870879
Rees, 2021, Imaging sodium dendrite Growth in all-solid-state sodium batteries using 23Na T2 -weighted magnetic resonance imaging, Angew. Chem. Int. Ed., 60, 2110, 10.1002/anie.202013066
Wu, 2021, A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries, Nat. Commun., 12, 1256, 10.1038/s41467-021-21488-7
Cheng, 2011, Functional materials for rechargeable batteries, Adv. Mater., 23, 1695, 10.1002/adma.201003587
Wang, 2021, Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes, J. Am. Chem. Soc., 143, 2829, 10.1021/jacs.0c12051
Aima Technology and Natrium
Science and Technology Department
Tian, 2020, Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization, Chem. Rev., 121, 1623, 10.1021/acs.chemrev.0c00767
Lee, 2019, Sodium metal anodes: emerging solutions to dendrite growth, Chem. Rev., 119, 5416, 10.1021/acs.chemrev.8b00642
Zhao, 2020, Rational design of layered oxide materials for sodium-ion batteries, Science, 370, 708, 10.1126/science.aay9972
Li, 2021, Solid-State electrolytes for sodium metal batteries, Energy Fuel., 35, 9063, 10.1021/acs.energyfuels.1c00347
Lu, 2018, Electrolyte and interface engineering for solid-state sodium batteries, Joule, 2, 1747, 10.1016/j.joule.2018.07.028
Tang, 2020, Critical interface between inorganic solid-state electrolyte and sodium metal, Mater. Today, 41, 200, 10.1016/j.mattod.2020.08.016
Tian, 2019, Reactivity-guided interface design in Na metal solid-state batteries, Joule, 3, 1037, 10.1016/j.joule.2018.12.019
Tian, 2017, Compatibility issues between electrodes and electrolytes in solid-state batteries, Energy Environ. Sci., 10, 1150, 10.1039/C7EE00534B
Xiao, 2019, Understanding interface stability in solid-state batteries, Nat. Rev. Mater., 5, 105, 10.1038/s41578-019-0157-5
Wu, 2020, Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries, Energy Environ. Sci., 14, 12, 10.1039/D0EE02241A
Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030, 10.1038/nenergy.2016.30
Banerjee, 2016, Na3SbS4 : a solution processable sodium superionic Conductor for all-solid-state sodium-ion batteries, Angew. Chem. Int. Ed., 55, 9634, 10.1002/anie.201604158
Wang, 2016, An air-stable Na3SbS4 superionic conductor Prepared by a Rapid and economic synthetic procedure, Angew. Chem. Int. Ed., 55, 8551, 10.1002/anie.201601546
Zhang, 2016, Vacancy-contained tetragonal Na3SbS4 superionic conductor, Adv. Sci., 3, 1600089, 10.1002/advs.201600089
Zhang, 2018, Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries, Electrochim. Acta, 259, 100, 10.1016/j.electacta.2017.10.173
Wang, 2022, Enhanced electrochemical performance enabled by ionic-liquid-coated Na3SbS4 electrolyte encapsulated in flexible filtration membrane, Chem. Eng. J., 428, 132094, 10.1016/j.cej.2021.132094
Gover, 2006, The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3, Solid State Ionics, 177, 1495, 10.1016/j.ssi.2006.07.028
Wolfenstine, 2017, Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review, Ionics, 24, 1271, 10.1007/s11581-017-2314-4
Zhang, 2019, Dendrites in lithium metal anodes: suppression, regulation, and elimination, Accounts Chem. Res., 52, 3223, 10.1021/acs.accounts.9b00437
Sun, 2021, Visualizing lithium dendrite formation within solid-state electrolytes, ACS Energy Lett., 6, 451, 10.1021/acsenergylett.0c02314
Mei, 2020, A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes, Mater. Today Commun., 24, 101004, 10.1016/j.mtcomm.2020.101004
Bachman, 2016, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction, Chem. Rev., 116, 140, 10.1021/acs.chemrev.5b00563
Gao, 2020, Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors, Chem. Rev., 120, 5954, 10.1021/acs.chemrev.9b00747
Fergus, 2012, Ion transport in sodium ion conducting solid electrolytes, Solid State Ionics, 227, 102, 10.1016/j.ssi.2012.09.019
Zhao, 2020, Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures, Proc. Natl. Acad. Sci. U.S.A., 117, 26053, 10.1073/pnas.2004576117
Munoz, 2018, Review of recent nuclear magnetic resonance studies of ion transport in polymer electrolytes, Membranes, 8, 10.3390/membranes8040120
Zou, 2020, Mobile ions in composite solids, Chem. Rev., 120, 4169, 10.1021/acs.chemrev.9b00760
Fragiadakis, 2009, Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide), J. Chem. Phys., 130, 10.1063/1.3063659
Huang, 2020, Melt crystallization and segmental dynamics of poly(ethylene oxide) confined in a solid electrolyte composite, J. Polym. Sci., 58, 466, 10.1002/pol.20190095
Marchiori, 2020, Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts, Chem. Mater., 32, 7237, 10.1021/acs.chemmater.0c01489
Fu, 2020, Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries, Nat. Mater., 19, 758, 10.1038/s41563-020-0655-2
Ohno, 2020, How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study, ACS Energy Lett., 5, 910, 10.1021/acsenergylett.9b02764
Breuer, 2018, Rapid Li ion dynamics in the interfacial regions of nanocrystalline solids, J. Phys. Chem. Lett., 9, 2093, 10.1021/acs.jpclett.8b00418
Pang, 2018, Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating, Proc. Natl. Acad. Sci. U.S.A., 115, 12389, 10.1073/pnas.1809187115
Deng, 2015, Elastic properties of alkali superionic conductor electrolytes from first principles calculations, J. Electrochem. Soc., 163, A67, 10.1149/2.0061602jes
Monroe, 2005, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152, A396, 10.1149/1.1850854
Monroe, 2004, The effect of interfacial deformation on electrodeposition kinetics, J. Electrochem. Soc., 151, A880, 10.1149/1.1710893
Singman, 1984, Atomic volume and allotropy of the elements, J. Chem. Educ., 61, 137, 10.1021/ed061p137
Ahmad, 2017, Stability of electrodeposition at solid-solid interfaces and implications for metal anodes, Phys. Rev. Lett., 119, 056003, 10.1103/PhysRevLett.119.056003
Marcus, 2002, Ion volumes: a comparison, Dalton Trans., 3795, 10.1039/b205785a
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32, 751, 10.1107/S0567739476001551
Lacivita, 2019, Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries, J. Mater. Chem., 7, 8144, 10.1039/C8TA10498K
Matios, 2019, Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability, ACS Appl. Mater. Interfaces, 11, 5064, 10.1021/acsami.8b19519
Ruan, 2019, Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery, Ceram. Int., 45, 1770, 10.1016/j.ceramint.2018.10.062
Duchene, 2017, A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture, Chem. Commun., 53, 4195, 10.1039/C7CC00794A