Ultrathin conformal devices for precise and continuous thermal characterization of human skin
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arumugam, V., Naresh, M. D. & Sanjeevi, R. Effect of strain rate on the fracture behaviour of skin. J. Biosci. 19, 307–313 (1994).
Agache, P. G., Monneur, C., Leveque, J. L. & De Rigal, J. Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. Res. 269, 221–232 (1980).
Cohen, M. L. Measurement of thermal-properties of human-skin—review. J. Invest. Dermatol. 69, 333–338 (1977).
Hassan, M. & Togawa, T. Observation of skin thermal inertia distribution during reactive hyperaemia using a single-hood measurement system. Physiol. Meas. 22, 187–200 (2001).
Thoresen, M. & Walloe, L. Skin blood-flow in humans as a function of environmental-temperature measured by ultrasound. Acta Physiol. Scand. 109, 333–341 (1980).
Lossius, K., Eriksen, M. & Walloe, L. Fluctuations in blood-flow to acral skin in humans—connection with heart-rate and blood-pressure variability. J. Physiol. 460, 641–655 (1993).
Crandall, C. G., Meyer, D. M., Davis, S. L. & Dellaria, S. M. Palmar skin blood flow and temperature responses throughout endoscopic sympathectomy. Anesth. Anal. 100, 277–283 (2005).
Jansky, L. et al. Skin temperature changes in humans induced by local peripheral cooling. J. Therm. Biol. 28, 429–437 (2003).
Bernjak, A., Clarkson, P. B., McClintock, P. V. & Stefanovska, A. Low-frequency blood flow oscillations in congestive heart failure and after beta1-blockade treatment. Microvasc. Res. 76, 224–232 (2008).
Holowatz, L. A., Thompson-Torgerson, C. S. & Kenney, W. L. The human cutaneous circulation as a model of generalized microvascular function. J. Appl. Physiol. 105, 370–372 (2008).
Gorbach, A. M. et al. Infrared imaging of nitric oxide-mediated blood flow in human sickle cell disease. Microvasc. Res. 84, 262–269 (2012).
Kvandal, P. et al. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc. Res. 72, 120–127 (2006).
Ishibashi, Y. et al. Short duration of reactive hyperemia in the forearm of subjects with multiple cardiovascular risk factors. Circ. J. 70, 115–123 (2006).
Huang, A. L. et al. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler. Thromb. Vasc. 27, 2113–2119 (2007).
Nordin, M. Sympathetic discharges in the human supraorbital nerve and their relation to sudo- and vasomotor responses. J. Physiol. 423, 241–255 (1990).
Celermajer, D. S. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340, 1111–1115 (1992).
Akhtar, M. W., Kleis, S. J., Metcalfe, R. W. & Naghavi, M. Sensitivity of digital thermal monitoring parameters to reactive hyperemia. J. Biomech. Eng. 132, 051005 (2010).
Deshpande, C. Thermal Analysis of Vascular Reactivity. MS thesis, Texas A&M Univ. (2007).
Gustafsson, S. E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62, 797–804 (1991).
Park, J. H., Lee, J. W., Kim, Y. C. & Prausnitz, M. R. The effect of heat on skin permeability. Int. J. Pharm. 359, 94–103 (2008).
Paranjape, M. et al. A PDMS dermal patch for non-intrusive transdermal glucose sensing. Sens. Actuat. A 104, 195–204 (2003).