Ultrathin conformal devices for precise and continuous thermal characterization of human skin

Nature Materials - Tập 12 Số 10 - Trang 938-944 - 2013
R. Chad Webb1, Andrew P. Bonifas1, Alex Behnaz2, Yihui Zhang3, Ki Jun Yu4, Huanyu Cheng5, Mingxing Shi6, Zuguang Bian5, Zhuangjian Liu7, Yun‐Soung Kim1, Woon‐Hong Yeo1, Jae Suk Park4, Jizhou Song8, Yuhang Li5, Yonggang Huang5, Alexander M. Gorbach2, John A. Rogers1
1Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, USA.
3Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
4Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, Illinois 61801, USA
5Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Center for Engineering and Health, and Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208, USA
6School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
7Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
8Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, Florida 33146, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang, S. D. et al. Mechanics of epidermal electronics. J. Appl. Mech.-T. ASME 79, 031022 (2012).

Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

Arumugam, V., Naresh, M. D. & Sanjeevi, R. Effect of strain rate on the fracture behaviour of skin. J. Biosci. 19, 307–313 (1994).

Agache, P. G., Monneur, C., Leveque, J. L. & De Rigal, J. Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. Res. 269, 221–232 (1980).

Cohen, M. L. Measurement of thermal-properties of human-skin—review. J. Invest. Dermatol. 69, 333–338 (1977).

Hassan, M. & Togawa, T. Observation of skin thermal inertia distribution during reactive hyperaemia using a single-hood measurement system. Physiol. Meas. 22, 187–200 (2001).

Thoresen, M. & Walloe, L. Skin blood-flow in humans as a function of environmental-temperature measured by ultrasound. Acta Physiol. Scand. 109, 333–341 (1980).

Lossius, K., Eriksen, M. & Walloe, L. Fluctuations in blood-flow to acral skin in humans—connection with heart-rate and blood-pressure variability. J. Physiol. 460, 641–655 (1993).

Crandall, C. G., Meyer, D. M., Davis, S. L. & Dellaria, S. M. Palmar skin blood flow and temperature responses throughout endoscopic sympathectomy. Anesth. Anal. 100, 277–283 (2005).

Jansky, L. et al. Skin temperature changes in humans induced by local peripheral cooling. J. Therm. Biol. 28, 429–437 (2003).

Bernjak, A., Clarkson, P. B., McClintock, P. V. & Stefanovska, A. Low-frequency blood flow oscillations in congestive heart failure and after beta1-blockade treatment. Microvasc. Res. 76, 224–232 (2008).

Holowatz, L. A., Thompson-Torgerson, C. S. & Kenney, W. L. The human cutaneous circulation as a model of generalized microvascular function. J. Appl. Physiol. 105, 370–372 (2008).

Gorbach, A. M. et al. Infrared imaging of nitric oxide-mediated blood flow in human sickle cell disease. Microvasc. Res. 84, 262–269 (2012).

Kvandal, P. et al. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc. Res. 72, 120–127 (2006).

Ishibashi, Y. et al. Short duration of reactive hyperemia in the forearm of subjects with multiple cardiovascular risk factors. Circ. J. 70, 115–123 (2006).

Huang, A. L. et al. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler. Thromb. Vasc. 27, 2113–2119 (2007).

Nordin, M. Sympathetic discharges in the human supraorbital nerve and their relation to sudo- and vasomotor responses. J. Physiol. 423, 241–255 (1990).

Celermajer, D. S. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340, 1111–1115 (1992).

Akhtar, M. W., Kleis, S. J., Metcalfe, R. W. & Naghavi, M. Sensitivity of digital thermal monitoring parameters to reactive hyperemia. J. Biomech. Eng. 132, 051005 (2010).

Deshpande, C. Thermal Analysis of Vascular Reactivity. MS thesis, Texas A&M Univ. (2007).

Gustafsson, S. E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62, 797–804 (1991).

Park, J. H., Lee, J. W., Kim, Y. C. & Prausnitz, M. R. The effect of heat on skin permeability. Int. J. Pharm. 359, 94–103 (2008).

Paranjape, M. et al. A PDMS dermal patch for non-intrusive transdermal glucose sensing. Sens. Actuat. A 104, 195–204 (2003).

Ikeda, T. et al. Local radiant heating increases subcutaneous oxygen tension. Am. J. Surg. 175, 33–37 (1998).