Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solid‐State Electrolyte

Advanced Functional Materials - Tập 27 Số 12 - 2017
Bing Li1, Peng Gu1, Yongcheng Feng1, Guangxun Zhang1, Kesheng Huang1, Huaiguo Xue1, Huan Pang1
1School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China

Tóm tắt

2D materials are ideal for constructing flexible electrochemical energy storage devices due to their great advantages of flexibility, thinness, and transparency. Here, a simple one‐step hydrothermal process is proposed for the synthesis of nickel–cobalt phosphate 2D nanosheets, and the structural influence on the pseudocapacitive performance of the obtained nickel–cobalt phosphate is investigated via electrochemical measurement. It is found that the ultrathin nickel–cobalt phosphate 2D nanosheets with an Ni/Co ratio of 4:5 show the best electrochemical performance for energy storage, and the maximum specific capacitance up to 1132.5 F g−1. More importantly, an aqueous and solid‐state flexible electrochemical energy storage device has been assembled. The aqueous device shows a high energy density of 32.5 Wh kg−1 at a power density of 0.6 kW kg−1, and the solid‐state device shows a high energy density of 35.8 Wh kg−1 at a power density of 0.7 kW kg−1. These excellent performances confirm that the nickel–cobalt phosphate 2D nanosheets are promising materials for applications in electrochemical energy storage devices.

Từ khóa


Tài liệu tham khảo

10.1126/science.1102896

10.1002/adma.201304964

10.1039/c2cs35387c

10.1021/acsnano.5b05040

10.1038/nmat1849

10.1021/ja408329q

10.1038/ncomms2472

10.1039/C3CS60231A

10.1016/j.nanoen.2016.05.042

10.1038/nature13792

10.1039/C4CS00399C

10.1039/C4CS00300D

10.1002/adma.201404568

10.1021/jacs.5b00021

10.1002/ange.201410890

10.1039/C5TA05658F

10.1021/am500294m

10.1039/c2jm32241b

10.1039/C5TA05934H

10.1002/adma.201304148

10.1002/adma.201401513

10.1002/adma.201205332

10.1002/adma.201300132

10.1002/adma.201301332

10.1002/adfm.201404142

10.1039/c2ta01035f

10.1002/anie.200900639

10.1039/c3nr01460f

10.1039/C4TA05278A

10.1002/open.201402112

10.1002/ange.201404615

10.1038/ncomms3431

10.1021/acs.chemmater.5b04343

10.1021/nn5004315

10.1016/j.electacta.2016.01.042

10.1016/j.electacta.2016.03.145

10.1038/srep17613

10.1016/j.nanoen.2015.04.034

10.1002/anie.200351691

10.1002/asia.201500335

10.1016/j.nanoen.2015.07.030

10.1002/aenm.201501833

10.1016/j.jechem.2016.03.002

10.1039/C4DT02831G

10.1002/cplu.201300015

10.1002/ppsc.201500018

10.1016/j.matlet.2015.03.053

10.1016/j.jallcom.2015.08.121

10.1039/C5EE03772G

10.1039/C6TA02410F

10.1016/j.electacta.2016.08.074