Ultrathin MXene/Calcium Alginate Aerogel Film for High‐Performance Electromagnetic Interference Shielding

Advanced Materials Interfaces - Tập 6 Số 6 - 2019
Zehang Zhou1, Jize Liu1, Xinxing Zhang1, Dong Tian2, Zeying Zhan1, Canhui Lu1
1State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065 P. R. China
2Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130 P. R. China

Tóm tắt

AbstractUltrathin and high‐performance electromagnetic interference (EMI) shielding materials are urgently demanded for modern microelectronic devices. 2D metal carbides (MXenes) are considered as a promising EMI shielding material due to its metallic conductivity. In this study, sodium alginate is applied as interlayer spacer for Ti3C2Tx nanosheets, which not only prevents the restacking of lamella structure but also serves as building blocks for the sponge‐like structure. Ultrathin Ti3C2Tx/calcium alginate (CA) aerogel films with sponge‐like structure and only tens of microns thickness are prepared through divalent metal ion induced crosslinking, vacuum‐assisted‐filtration induced self‐assembly, and freeze‐drying. Taking advantage of its sponge‐like structure, which facilitates the dissipation of incident electromagnetic waves through multireflection and scattering Ti3C2Tx/CA aerogel film, presents excellent EMI shielding effectiveness (54.3 dB) at a very low thickness of 26 µm. Furthermore, Ti3C2Tx/CA aerogel film shows an outstanding specific EMI shielding efficiency (17586 dB cm2 g−1), which is superior to most reported synthetic materials. The preparation of ultrathin Ti3C2Tx/CA aerogel film provides facile strategy for designing and fabricating high‐performance MXene‐based EMI‐shielding materials, which is highly desirable for various applications including aerospace and smart electronic devices.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201405788

10.1002/adma.201204196

10.1002/adma.201305293

10.1289/ehp.98106101

10.1016/j.carbon.2013.04.008

10.1021/am200021v

10.1002/smll.201701388

10.1002/adv.1995.060140205

10.1016/j.carbon.2008.12.038

10.1021/nl0602589

10.1016/j.mser.2013.06.001

10.1039/C5TC01354B

10.1002/smll.201704332

10.1021/nn204153h

10.1021/acs.chemmater.7b02847

10.1002/adma.201304138

10.1038/natrevmats.2016.98

10.1002/smll.201703419

10.1021/ac102634e

10.1016/j.snb.2015.04.090

10.1039/C4TC00517A

10.1002/adma.201701583

10.1016/j.carbon.2015.05.033

10.1126/science.aag2421

10.1002/adfm.201702807

10.1002/adfm.201803938

10.1002/smll.201101791

10.1039/C6TA02738E

10.1039/C7TA11164A

10.1038/srep46379

10.1016/j.jcis.2013.01.051

10.1016/j.matdes.2016.11.038

10.1016/j.ijbiomac.2015.11.061

10.1016/j.biomaterials.2012.01.007

10.1016/j.envpol.2017.11.087

10.1021/jp0689870

10.1038/srep32049

10.1021/acsami.6b06455

10.1016/j.carbpol.2016.01.050

10.1016/j.carbpol.2012.01.071

10.1002/adma.200502537

10.1016/j.matlet.2015.05.080

10.1021/nn700349a

10.1016/S0008-6223(00)00184-6

10.1002/pen.21384

10.1073/pnas.1414215111

10.1002/adfm.201400079

10.1002/app.29812

10.1016/j.carbon.2007.10.013

10.1039/c2jm32692b