Ultrathin Layered SnSe Nanoplates for Low Voltage, High‐Rate, and Long‐Life Alkali–Ion Batteries

Small - Tập 13 Số 46 - 2017
Wei Wang1, Peihao Li1, Henry Zheng1, Qiao Liu2, Fan Lv1, Jiandong Wu2, Hao Wang2, Shaojun Guo3,2,1
1Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
2Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
3BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China

Tóm tắt

Abstract2D electrode materials with layered structures have shown huge potential in the fields of lithium‐ and sodium‐ion batteries. However, their poor conductivity limits the rate performance and cycle stability of batteries. Herein a new colloid chemistry strategy is reported for making 2D ultrathin layered SnSe nanoplates (SnSe NPs) for achieving more efficient alkali‐ion batteries. Due to the effect of weak Van der Waals forces, each semiconductive SnSe nanoplate stacks on top of each other, which can facilitate the ion transfer and accommodate volume expansion during the charge and discharge process. This unique structure as well as the narrow‐bandgap semiconductor property of SnSe simultaneously meets the requirements of achieving fast ionic and electronic conductivities for alkali‐ion batteries. They exhibit high capacity of 463.6 mAh g−1 at 0.05 A g−1 for Na‐ion batteries and 787.9 mAh g−1 at 0.2 A g−1 for Li‐ion batteries over 300 cycles, and also high stability for alkali‐ion batteries.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201603613

10.1038/srep03383

10.1038/nmat4629

10.1126/science.1212741

10.1021/nl203967r

10.1002/anie.200702505

10.1021/acs.accounts.5b00482

10.1002/aenm.201200026

10.1002/adfm.201602933

10.1002/anie.201410376

10.1016/j.nanoen.2015.03.017

10.1016/j.ensm.2016.06.003

10.1002/aenm.201401170

10.1038/nnano.2007.411

10.1002/adma.201501692

10.1021/acs.nanolett.5b00367

10.1021/cr300263a

10.1016/j.nanoen.2015.01.044

10.1002/adma.201602262

10.1021/nn100740x

10.1021/nn400280c

10.1021/nl402633n

10.1021/nn503582c

10.1016/0169-4332(95)00179-4

10.1039/C6NR02983C

10.1002/adma.201602469

10.1149/1.2139871

10.1039/C4CS00287C

10.1039/C5CS00937E

10.1016/j.progsurf.2014.11.001

10.1021/cm9504347

10.1021/ja308249k

10.1039/c1cc15169j

10.1002/ange.201403530

10.1002/cssc.201200680

10.1002/aenm.201100691

10.1016/j.jpowsour.2015.02.096

10.1039/C4NR02538E

10.1002/adma.201500196

10.1002/adma.201501130

10.1038/nature12494

10.1038/nphys2080

10.1126/science.1235547

10.1002/adma.200306125

10.1039/C2NR32661B

10.1002/adma.200400183

10.1016/j.jpowsour.2013.11.016