Ultrathin Iron‐Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction

Advanced Materials - Tập 29 Số 17 - 2017
Linzhou Zhuang1, Lei Ge1, Yisu Yang1, Mengran Li1, Yi Jia2, Xiangdong Yao2, Zhonghua Zhu1
1School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia
2School of Natural Sciences and Queensland, Micro- and Nanotechnology Centre, Griffith University, Nathan Campus 4111, Australia

Tóm tắt

Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low‐cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron‐cobalt oxide nanosheets (FexCoy‐ONSs) with a large specific surface area (up to 261.1 m2 g−1), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1Co1‐ONS measured at an overpotential of 350 mV reaches up to 54.9 A g−1, while its Tafel slope is 36.8 mV dec−1; both of which are superior to those of commercial RuO2, crystalline Fe1Co1‐ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1Co1‐ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2O onto nearby Co3+ sites.

Từ khóa


Tài liệu tham khảo

10.1002/cphc.201402137

10.1002/cctc.201000397

10.1021/ja502128j

10.1039/c3nr00444a

10.1021/ja505186m

10.1002/ange.201504815

10.1039/C6CC05244D

10.1038/ncomms5477

10.1016/j.materresbull.2012.03.051

10.1021/ja511559d

10.1126/science.1212858

10.1021/jz400595z

10.1002/smll.201600345

10.1039/C0EE00518E

10.1021/acscatal.5b02193

10.1021/nn500880v

10.1126/science.aad0832

10.1039/C6EE00054A

10.1039/C5EE01155H

10.1039/C5TA07586F

10.1021/ja502379c

10.1021/jacs.5b06814

10.1002/anie.201502226

10.1002/adma.201602912

10.1002/anie.201600687

10.1021/ja506254g

10.1021/acs.chemmater.5b04457

10.1016/j.saa.2011.01.018

10.1016/j.solener.2008.04.006

10.1126/science.aaf1525

10.1021/ja208475y

10.1039/C5CC01558H

10.1039/C4SC00565A

10.1021/ja411835a

10.1016/j.apsusc.2010.10.051

10.1039/C4TA01952K

10.1016/j.jpowsour.2013.11.024

10.1021/jz2016507

10.1002/aenm.201500245

10.1021/acsami.6b06103

10.1021/ja200559j

10.1021/ja210924t

10.1016/j.catcom.2015.04.012

10.1002/aenm.201400696

10.1021/jacs.5b00281