Ultrastructure of the gill ciliary epithelium of Limnoperna fortunei (Dunker 1857), the invasive golden mussel

BMC Zoology - Tập 7 - Trang 1-14 - 2022
Erico Tadeu Fraga Freitas1,2,3, Amanda Maria Siqueira Moreira1,4, Rayan Silva de Paula1,4, Gabriela Rabelo Andrade1, Marcela David de Carvalho5, Paulo Santos Assis1,3, Erika Cristina Jorge4, Antônio Valadão Cardoso1,6
1Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Belo Horizonte, Brazil
2Centro de Microscopia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
3Universidade Federal de Ouro Preto (UFOP), FIMAT, Ouro Preto, Brazil
4Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
5Companhia Energética de Minas Gerais SA (CEMIG), Belo Horizonte, Brazil
6Escola de Design, Universidade Do Estado de Minas Gerais (UEMG), Belo Horizonte, Brazil

Tóm tắt

Limnoperna fortunei is a freshwater bivalve mollusc originally from southern Asia that invaded South America in the 1990’s. Due to its highly efficient water pumping and filtering, and its capacity to form strong adhesions to a variety of substrates by byssus thread, this invasive species has been able to adapt to several environments across South America, causing significant ecological and economic damages. By gaining a deeper understanding of the biological and ecological aspects of L. fortunei we will be able to establish more effective strategies to manage its invasion. The gills of the mollusc are key structures responsible for several biological functions, including respiration and feeding. In this work, we characterized the ultrastructure of L. fortunei gills and its ciliary epithelium using light microscopy, transmission and scanning electron microscopies. This is the first report of the morphology of the epithelial cells and cilia of the gill of L. fortunei visualized in high resolution. The analysis showed highly organized and abundant ciliary structures (lateral cilia, laterofrontal cirri and frontal cilia) on the entire length of the branchial epithelium. Mitochondria, smooth endoplasmic reticulum and glycogen granules were abundantly found in the epithelial cells of the gills, demonstrating the energy-demanding function of these structures. Neutral mucopolysaccharides (low viscosity mucus) were observed on the frontal surface of the gill filaments and acid mucopolysaccharides (high viscosity mucus) were observed to be spread out, mainly on the lateral tract. Spherical vesicles, possibly containing mucus, could also be observed in these cells. These findings demonstrate the importance of the mucociliary processes in particle capture and selection. Our data suggest that the mechanism used by this mollusc for particle capture and selection could contribute to a better understanding of key aspects of invasion and also in the establishment of more efficient and economically viable strategies of population control.

Tài liệu tham khảo

Fernandes FdC, Mansur M, Pereira D, Fernandes L, Campos S, Danelos O. Abordagem conceitual dos moluscos invasores nos ecossistemas límnicos brasileiros. In: Mansur MCD, Santos CPd, Pereira D, Paz ICP, Zurita MLL, Rodriguez MTR, Nehrke MV, Bergonci PEA. organizadores. Moluscos límnicos invasores no Brasil: biologia, prevenção e controle. Porto Alegre: Redes Editora; 2012. pp. 19–23. Ituarte C. Primera noticia acerca de la introducción de pelecípodos asiáticos en el área rioplatense (Mollusca: Corbiculidae). Neotropica. 1981;27(77):79–82. Darrigran G, Pastorino G. Bivalvos invasores en el Río de la Plata, Argentina. Comun Soc Malacol Urug. 1993;7:309–13. Xu M. Distribution and spread of Limnoperna fortunei in China. In: Invading nature – Springer series in invasion ecology. Springer. 2015. doi:https://doi.org/10.1007/978-3-319-13494-9_17. Oliveira MD, Campos MC, Paolucci EM, Mansur MC, Hamilton SK. Colonization and spread of Limnoperna fortunei in South America. In: Invading nature – Springer series in invasion ecology. Springer. 2015. doi:https://doi.org/10.1007/978-3-319-13494-9_19. Uliano-Silva M, Americo JA, Brindeiro R, Dondero F, Prosdocimi F, de Freitas Rebelo M. Gene discovery through transcriptome sequencing for the invasive mussel Limnoperna fortunei. PLoS One 9. 2014; doi:https://doi.org/10.1371/journal.pone.0102973. de Andrade JTM, Cordeiro NIS, Montresor LC, da Luz DMR, de Faria Viana EM, Martinez CB, Vidigal THDA. Tolerance of Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae) to aerial exposure at different temperatures. Hydrobiologia. 2020. doi:https://doi.org/10.1007/s10750-020-04191-4. Andrade GR, de Araújo JLF, Nakamura Filho A, Guañabens AC, Carvalho MDd, Cardoso AV. Functional Surface of the golden mussel’s foot: morphology, structures and the role of cilia on underwater adhesion. Mat Sci Eng C. 2015. doi:https://doi.org/10.1016/j.msec.2015.04.032. Nakamura Filho A, Almeida ACd, Riera HE, Araújo JLFd, Gouveia VJP, Carvalho MDd, Cardoso AV. Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei). Mater Res. 2014. doi:https://doi.org/10.1590/S1516-14392014005000044. Sylvester F, Dorado J, Boltovskoy D, Juárez Á, Cataldo D. Filtration rates of the invasive pest bivalve Limnoperna fortunei as a function of size and temperature. Hydrobiologia. 2005. doi:https://doi.org/10.1007/s10750-004-1322-3. Waykar B, Deshmukh G. Evaluation of bivalves as bioindicators of metal pollution in freshwater. Bull Environ Contam Toxicol. 2012. doi:https://doi.org/10.1007/s00128-011-0447-0. Schøyen M, Allan IJ, Ruus A, Håvardstun J, Hjermann D, Beyer J. Comparison of caged and native blue mussels (Mytilus edulis spp.) for environmental monitoring of PAH, PCB and trace metals. Mar Environ Res. 2017. doi:https://doi.org/10.1016/j.marenvres.2017.07.025. Ward JE, Rosa M, Shumway SE. Capture, ingestion, and egestion of microplastics by suspension-feeding bivalves: a 40-year history. Anthropocene Coasts. 2019. doi:https://doi.org/10.1139/anc-2018-0027. Di Fiori E, Pizarro H, dos Santos Afonso M, Cataldo D. Impact of the invasive mussel Limnoperna fortunei on glyphosate concentration in water. Ecotox Environ Safe. 2012. doi:https://doi.org/10.1016/j.ecoenv.2012.04.024. Vargas RPF, Saad JF, Graziano M, dos Santos Afonso M, Izaguirre I, Cataldo D. Bacterial composition of the biofilm on valves of Limnoperna fortunei and its role in glyphosate degradation in water. Aquat Microb Ecol. 2019. doi:https://doi.org/10.3354/ame01907. Mansur M. Bivalves invasores límnicos: morfologia comparada de Limnoperna fortunei e espécies de Corbicula spp. In: Mansur MCD, Santos CPd, Pereira D, Paz ICP, Zurita MLL, Rodriguez MTR, Nehrke MV, Bergonci PEA. organizadores. Moluscos límnicos Invasores no Brasil: biologia, prevenção, controle. Porto Alegre: Redes Editora; 2012. pp. 61–74. Morton B. The biology and anatomy of Limnoperna fortunei, a significant freshwater bioinvader: blueprints for success. In: Invading nature – Springer series in invasion ecology. Springer. 2015. doi:https://doi.org/10.1007/978-3-319-13494-9_1. Bogan AE. Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater. In: Balian EV, Lévêque C, Segers H, Martens K, editors. Freshwater animal diversity assessment. Springer. 2008; doi:https://doi.org/10.1007/978-1-4020-8259-7_16. Guerreiro AdS, Monteiro JS, Medeiros ID, Sandrini JZ. First evidence of transcriptional modulation by chlorothalonil in mussel Perna perna. Chemosphere. 2020. doi:https://doi.org/10.1016/j.chemosphere.2020.126947. dos Santos RN, Campos FS, de Albuquerque NRM, Finoketti F, Correa RA, Cano-Ortiz L, Assis FL, Arantes TS, Roehe PM, Franco AC. A new marseillevirus isolated in Southern Brazil from Limnoperna fortunei. Sci Rep. 2016. doi:https://doi.org/10.1038/srep35237. Ridewood WD. On the structure of the gills of the lamellibranchia. Philos Trans R Soc B. 1903. doi:https://doi.org/10.1098/rstb.1903.0005. Cannuel R, Beninger PG, McCombie H, Boudry P. Gill development and its functional and evolutionary implications in the blue mussel Mytilus edulis (Bivalvia: Mytilidae). Biol Bull. 2009. doi:https://doi.org/10.1086/BBLv217n2p173. Atkins D. On the ciliary mechanisms and interrelationships of lamellibranchs. Part III: types of lamellibranch gills and their food currents. J Cell Sci. 1937. doi:https://doi.org/10.1242/jcs.s2-79.315.375. Riisgård HU, Funch P, Larsen PS. The mussel filter–pump–present understanding, with a re-examination of gill preparations. Acta Zool. 2015. doi:https://doi.org/10.1111/azo.12110. Ward JE. Biodynamics of suspension-feeding in adult bivalves molluscs: particle capture, processing and fate. Invert Bio. 1996. doi:https://doi.org/10.2307/3226932. Ward JE, Sanford LP, Newell RIE, MacDonald BA. A new explanation of particle capture in suspension-feeding bivalve molluscs. Limnol Oceanogr. 1998. doi:https://doi.org/10.4319/lo.1998.43.5.0741. Atkins D. On the ciliary mechanisms and interrelationships of lamellibranchs. Part VI: latero-frontal cilia of the gill filaments and their phylogenetic value. J Cell Sci. 1938. doi:https://doi.org/10.1242/jcs.s2-80.319.345. Silverman H, Lynn JW, Achberger EC, Dietz TH. Gill structure in zebra mussels: bacterial-sized particle filtration. Am Zool. 1996. doi:https://doi.org/10.1093/icb/36.3.373. Owen G. Classification and the bivalve gill. Phil Trans R Soc Lond B. 1978. doi:https://doi.org/10.1098/rstb.1978.0075. Yonge C. Structure and physiology of the organs of feeding and digestion in Ostrea edulis. J Mar Biolog Assoc UK. 1926. doi:https://doi.org/10.1017/S002531540000789X. Atkins D. On the ciliary mechanisms and interrelationships of lamellibranchs. Part II: sorting devices on the gills. J Cell Sci. 1937. doi:https://doi.org/10.1242/jcs.s2-79.315.339. Foster-Smith RL. The role of mucus in the mechanism of feeding in three filter-feeding bivalves. Proc Malac Soc Lond. 1975. doi:https://doi.org/10.1093/oxfordjournals.mollus.a065307. Ribelin BW, Collier A. Studies on the gill ciliation of the American oyster Crassostea virginica (Gmelin). J Morph. 1977. doi:https://doi.org/10.1002/jmor.1051510308. Foster-Smith RL. The function of the pallial organs of bivalves in controlling ingestion. J Moll Stud. 1978; doi:1093/oxfordjournals.mollus.a065419. Beninger PG, Le Pennec M, Donval A. Mode of particle ingestion in five species of suspension-feeding bivalve molluscs. Mar Biol. 1991. doi:https://doi.org/10.1007/BF01344340. Riisgård HU, Larsen PS. Particle capture mechanisms in suspension-feeding invertebrates. Mar Ecol Progr Ser. 2010. doi:https://doi.org/10.3354/meps08755. Ward JE, Shumway SE. Separating the grain from the chaff: particle selection in suspension-and deposit-feeding bivalves. J Exp Mar Biol Ecol. 2004. doi:https://doi.org/10.1016/j.jembe.2004.03.002. Rosa M, Ward JE, Shumway SE. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: a review. J Shellfish Res. 2018. doi:https://doi.org/10.2983/035.037.0405. Paolucci E, Sardiña P, Sylvester F, Perepelizin PV, Zhan A, Ghabooli S, Cristescu ME, Oliveira MD, MacIsaac HJ. Morphological and genetic variability in an alien invasive mussel across an environmental gradient in South. America Limnol Oceanogr. 2014. doi:https://doi.org/10.4319/lo.2014.59.2.0400. Rodriguez C, Prieto GI, Vega IA, Castro-Vazquez A. Functional and evolutionary perspectives on gill structures of an obligate air-breathing, aquatic snail. PeerJ. 2019. doi:https://doi.org/10.7717/peerj.7342. Beninger PG, Le Pennec M, Salaün M. New observations of the gills of Placopecten magellanicus (Mollusca: Bivalvia), and implications for nutrition. I. General anatomy and surface microanatomy. Mar Biol. 1988. doi:https://doi.org/10.1007/BF00392659. Le Pennec M, Beninger PG, Herry A. New observations of the gills of Placopecten magellanicus (Mollusca: Bivalvia), and implications for nutrition. II. Internal anatomy and microanatomy. Mar Biol. 1988. doi:https://doi.org/10.1007/BF00391199. Owen G. Studies on the gill of Mytilus edulis: the eu-latero-frontal cirri. Proc R Soc Lond B. 1974. doi:https://doi.org/10.1098/rspb.1974.0062. Nogarol LR, Brossi-Garcia AL, de Oliveira David JA, Fontanetti CS. Morphological and Histochemical Characterization of Gill Filaments of the Brazilian Endemic Bivalve Diplodon expansus (Küster, 1856) (Mollusca, Bivalvia, Hyriidae). Microsc Microanal. 2012. doi:https://doi.org/10.1017/S1431927612013992. Beninger PG, Decottignies P. Worth a second look: gill structure in Hemipecten forbesianus (Adam & Reeve, 1849) and taxonomic implications for the Pectinidae. J Molluscan Stud. 2008. doi:https://doi.org/10.1093/mollus/eyn001. Beninger PG, St-Jean S, Poussart Y, Ward JE. Gill function and mucotyte distribution in Placopecten magellanicus and Mytilus edulis (Mollusca: Bivalvia): the role of mucus in particle transport. Mar Eco Progr Ser. 1993. doi:https://doi.org/10.3354/meps098275. Beninger PG, Cannuel R, Jaunet S. Particle processing on the gill plicae of the oyster Crassostrea gigas: fine-scale mucocyte distribution and functional correlates. Mar Eco Progr Ser. 2005. doi:https://doi.org/10.3354/meps295191. Garrido M, Chaparro O, Thompson R, Garrido O, Navarro J. Particle sorting and formation and elimination of pseudofaeces in the bivalves Mulinia edulis (siphonate) and Mytilus chilensis (asiphonate). Mar Biol. 2012. doi:https://doi.org/10.1007/s00227-012-1879-8. Beninger PG, Le Pennec M. Scallop structure and function. Dev Aquacult Fish Sci. 2016. doi:https://doi.org/10.1016/B978-0-444-62710-0.00003-1. Zappa F, Failli M, Matteis MA. The Golgi complex in disease and therapy. Curr Opin Cell Biol. 2018. doi:https://doi.org/10.1016/j.ceb.2018.03.005. Fontanesi F. Mitochondria: structure and role in respiration. eLS. 2001. doi:https://doi.org/10.1002/9780470015902.a0001380.pub2. Jones HD, Richards OG, Hutchinson S. The role of ctenidial abfrontal cilia in water pumping in Mytilus edulis L. J Exp Mar Biol Ecol. 1990. doi:https://doi.org/10.1016/0022-0981(90)90108-O. Alberts B, Dennis B, Karen H. Fundamentos da Biologia Celular 4. Porto Alegre: Artmed Editora; 2006. Berthelin C, Kellner K, Mathieu M. Histological characterization and glucose incorporation into glycogen of the Pacific oyster Crassostrea gigas storage cells. Mar biotechnol. 2000. doi:https://doi.org/10.1007/s101269900017. Gilula NB, Satir P. Septate and gap junctions in molluscan gill epithelium. J Cell Biol. 1971. doi:https://doi.org/10.1083/jcb.51.3.869. Alexander DB, Goldberg GS. Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem. 2005. doi:https://doi.org/10.2174/0929867033456927.X1. Bancroft JD, Layton C. 10 - The hematoxylins and eosin, Editors: Suvarna SK, Layton C, Bancroft JD. Bancroft’s theory and practice of histological techniques. 2012; doi:https://doi.org/10.1016/B978-0-7020-4226-3.00010-X. Yamabayashi S. Periodic acid-Schiff-Alcian Blue: A method for the differential staining of glycoproteins. Histochem J. 1987. doi:https://doi.org/10.1007/BF01687364. Ferro AB, Alves I, Silva MA, Carrujo O. Optimização da técnica do tricrómio de Masson. Mícron. 2006; http://hdl.handle.net/10400.21/5458.