Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall

American Society for Microbiology - Tập 13 Số 11 - Trang 1450-1464 - 2014
Matthew J. Scholz1, Taylor L. Weiss2, Robert E. Jinkerson1, Jing Jia3, Robyn Roth4, Ursula Goodenough2, Matthew C. Posewitz1, Henri Gerken5
1Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USA
2Department of Biology, Washington University, St. Louis, Missouri, USA
3CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and BioEnergy Genome Center, Qindao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
4Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
5Arizona Center for Algal Technology and Innovation, Arizona State University, Mesa, Arizona, USA

Tóm tắt

ABSTRACT Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes.

Từ khóa


Tài liệu tham khảo

10.1016/S1434-4610(98)70010-0

10.1016/j.protis.2008.09.002

10.1016/S1389-0344(03)00063-7

10.1016/j.biortech.2012.02.123

10.4161/bioe.21880

10.1016/j.biombioe.2012.01.046

10.1016/j.biortech.2012.04.073

10.1128/EC.00364-09

10.1038/ncomms1688

10.1023/A:1008170915932

10.1016/j.limno.2006.05.002

10.1016/0960-8524(91)90123-2

10.1007/s10126-008-9174-x

10.1016/j.procbio.2011.06.021

10.1122/1.4717494

10.1007/BF02541832

10.1007/s13197-011-0313-4

10.1083/jcb.101.4.1599

10.1083/jcb.101.4.1550

10.1104/pp.107.100891

10.1002/ep.11849

KloaregBQuatranoRS. 1988. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. Annu. Rev. 26:259–315.

10.1002/pmic.200300634

10.1111/j.1469-8137.2010.03374.x

10.1016/S0146-6380(98)00206-X

10.1016/j.orggeochem.2009.05.003

10.1007/BF00395176

10.1007/s10886-005-0984-2

10.1016/j.cub.2008.12.031

10.1111/j.1365-313X.2011.04686.x

10.1111/j.1440-1835.1996.tb00039.x

10.1007/BF00191563

10.1007/BF01732578

10.1007/s00709-006-0197-8

10.1093/glycob/cwg058

10.1021/bm061185q

10.1016/j.jmb.2003.09.056

10.1039/JR9650003014

10.1016/0022-0981(91)90007-J

10.1371/journal.pgen.1003064

10.1016/S0031-9422(97)00068-X

JeffreeCE. 2007. The fine structure of the plant cuticle, p 11–125. In RiedererMMüllerC (ed), Annual plant reviews, vol 23. Blackwell Publishing Ltd., Oxford, United Kingdom.

10.1016/S0146-6380(02)00029-3

10.1016/S0146-6380(98)00012-6

10.1016/j.orggeochem.2004.10.017

SluiterADHamesBRRuizROScarlataCSluiterJBTempletonDWCrockerD. 2008. Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). National Renewable Energy Laboratory, Golden, CO.

10.1126/science.107.2775.254

10.1016/0076-6879(86)18062-1

10.1093/jmicro/dfr044

10.1104/pp.104.049965

10.1093/nar/gkn663

10.1093/nar/25.17.3389

10.1093/nar/gkh340

10.1016/B978-1-4832-2734-4.50017-6

10.2307/2408678

10.1073/pnas.1301027110

10.1128/genomeA.01166-13

10.1038/nature11744

10.1093/molbev/msr121

10.1186/1471-2229-9-99

10.1073/pnas.1314063110

10.1023/B:CELL.0000046339.48003.0e

10.1104/pp.010557

10.1093/pcp/pcr047

10.1111/j.1365-2958.2009.06678.x

10.1046/j.1365-2958.2001.02337.x

10.1023/A:1018411101036

10.1093/mp/sst120

10.1046/j.1432-1033.2002.03095.x

10.1038/nrm1746

10.1099/00221287-139-2-307

10.1128/JB.185.2.391-398.2003

10.1016/j.biochi.2007.03.015

10.1021/bi049394n

10.1021/ja012659q

10.1016/j.jsb.2010.07.008

10.1016/S0031-9422(00)00135-7

10.1016/S0146-6380(97)00035-1

10.1016/S0146-6380(01)00040-7

10.1111/j.1529-8817.1975.tb02766.x

10.1111/j.1529-8817.1975.tb02765.x

10.1007/s004250050515

10.2216/05-27.1

10.1111/j.1529-8817.2006.00313.x

10.1007/BF00402977

10.1046/j.1529-8817.2001.037001086.x

10.1007/s1012601-0051-0

10.1111/j.0022-3646.1997.00655.x

10.1002/pmic.200400092

10.1007/BF01276484

10.1016/0016-7037(96)00038-5

10.1016/S0146-6380(97)00037-5

10.1111/j.0022-3646.1991.00224.x

10.1111/j.1469-8137.2010.03345.x

10.1104/pp.113.214320

TomaselliL. 2007. The microalgal cell, p 1–19. In RichmondA (ed), Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd., Oxford, United Kingdom.

10.1371/journal.pgen.1004094

10.1039/JR9510000720

10.1042/bj0790531

10.1016/S0008-6215(00)82922-5

10.1104/pp.110.163360

10.1093/mp/ssq079

10.1046/j.1529-8817.1999.3540635.x

10.1006/jsbi.1996.0083

10.1073/pnas.73.1.143

10.1007/BF00393419

10.1007/BF01276358

10.1080/09670269600651171

10.1128/jb.177.6.1419-1424.1995

10.1186/1471-2164-14-909

10.1128/AEM.01633-06

10.1016/j.funbio.2012.04.014

10.1016/S0146-6380(98)00111-9

10.1016/j.orggeochem.2006.12.003

10.1016/j.phytochem.2008.06.004

10.1666/05038.1

10.1007/BF00368768

10.1007/s004250050548

10.1016/S0031-9422(97)00942-4

10.1016/0146-6380(96)00055-1

10.1007/BF00397478

10.1007/s00216-011-5376-6

10.1016/S0146-6380(02)00246-2

10.1016/0146-6380(92)90150-V

10.1007/978-1-4615-8714-9_3

10.1128/EC.00184-12