Định vị siêu cấu trúc của proteoglycan chính và procollagen loại II trong bào quan và bào tương ngoại bào của chondroblast nuôi cấy

R. V. Iozzo1, M. Pacifici2
1Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, USA
2Department of Anatomy-Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA

Tóm tắt

Cơ chế tổng hợp và chuyển động trong tế bào của các đại phân tử ma trận sụn khác nhau vẫn chưa được rõ ràng. Chúng tôi đã nghiên cứu vấn đề này trên các chondroblast nuôi cấy ở cấp độ siêu cấu trúc sử dụng (i) kháng thể monospecific chống lại protein lõi của proteoglycan sụn giàu keratan sulfate/chondroitin sulfate (KS:CS-PG) hoặc procollagen loại II, và (ii) phẩm nhuộm cuproin blue, một phẩm nhuộm dương tính liên kết với chuỗi glycosaminoglycan của proteoglycan. Trong tế bào, các kháng thể proteoglycan định vị KS:CS-PG và các tiền chất của nó chủ yếu trong phức hợp Golgi và các túi tiết. Ngược lại, phần lớn procollagen loại II được tìm thấy trong lưới nội bào hạt (ER). Trong khi không có collagen, ma trận ngoại bào lại giàu các phân tử KS:CS-PG, một số trong đó gắn vào màng bào tương của chondroblast. Nhuộm cuproin blue cho thấy rằng các proteoglycan có mặt trong phức hợp Golgi thuộc về lớp chính của các proteoglycan lớn, có thể đại diện cho KS:CS-PG, và một lớp phụ gồm các proteoglycan nhỏ hơn. Các nhóm proteoglycan khác biệt này thường chiếm các tiểu vùng khác nhau trong phức hợp Golgi; hơn nữa, các proteoglycan lớn đơn lẻ dường như được xếp hàng dọc theo bề mặt lòng của các cisternae Golgi và các túi tiết. Những kết quả này gợi ý rằng trong chondroblast nuôi cấy, KS:CS-PG và procollagen loại II được phân bố khác nhau trong cả các bào quan và trong ma trận ngoại bào, và rằng các loại proteoglycan khác nhau có thể chiếm các tiểu vùng khác nhau trong Golgi chuyển tiếp.

Từ khóa

#proteoglycan #procollagen #chondroblast #tế bào sụn #ma trận ngoại bào

Tài liệu tham khảo

Adams SL, Boettiger D, Focht RJ, Holtzer H, Pacifici M (1982) Regulation of the synthesis of extracellular matrix components in chondroblasts transformed by a temperature sensitive mutant of Rous sarcoma virus. Cell 30:373–384

Burditt LJ, Ratcliffe A, Fryer PR, Hardingham TE (1985) The intracellular localization of proteoglycans and their accumulation in chondrocytes treated with monensin. Biochim Biophys Acta 844:247–255

Chacko S, Abbott J, Holtzer S, Holtzer H (1969) The loss of phenotypic traits by differentiating cells. VI. Behaviour of the progeny of a single chondrocyte. J Exp Med 130:417–442

De Luca S, Lohmander LS, Nilsson B, Hascall VC, Caplan AI (1980) Proteoglycans from chick limb bud chondrocyde cultures. Keratan sulfate and oligosaccharides which contain mannose and sialic acid. J Biol Chem 255:6077–6083

Dessau W, Sasse J, Timpl R, Jelik F, von der Mark K (1978) Synthesis and extracellular deposition of fibronectin in chondrocyte cultures: response to the removal of extracellular cartilage matrix. J Cell Biol 79:342–355

Farquhar MG, Palade GE (1981) The Golgi apparatus (complex)-(1954–1981)-from artifact to center stage. J Cell Biol 91:77s-103s

Fellini SA, Hascall VC, Kimura JH (1984) Localization of proteoglycan core protein in subcellular fractions isolated from rat chondrosarcoma chondrocytes. J Biol Chem 259:4634–4641

Fewer D, Threadgold J, Sheldon H (1964) Studies on cartilage. V. Electron microscopic observations on the autoradiographic localization of 35S in cells and matrix. J Ultrastruct Res 11:166–172

Fleischer B, Smigel M (1978) Solubilization and properties of galactosyltransferase and sulfotransferase activities of Golgi membranes in Triton X-100. J Biol Chem 253:1632–1638

Gomori G (1950) An improved histochemical technique for acid phosphatase. Stain Technol 25:81–85

Hajek AS, Solursh M (1977) The effect of ascorbic acid on growth and synthesis of matrix components by cultured chick embryo chondrocytes. J Exp Zool 200:377–388

Hartwood R, Grant ME, Jackson DS (1974) Collagen biosynthesis: characterization of subcellular fractions from embryonic chick fibroblasts and the intracellular localization of procollagen prolyl and procollagen lysyl hydroxylases. Biochem J 144:123–130

Hartwood r, Grant ME, Jackson DS (1976) The influence of αα'-dipyridyl, colchicine and antimycin A on the secretory process in embryonic chick tendon and cartilage cells. Biochem J 156:81–90

Hascall VC (1981) Proteoglycans: Structure and function. In: Ginsburg (ed) Biology of carbohydrates. Wiley J & Sons, New York, pp 1–49

Horwitz AL, Dorfman A (1968) Subcellular sites for synthesis of chondromucoprotein of cartilage. J Cell Biol 38:358–368

Hunziker EB, Herrmann W, Schenk RK (1983) Ruthenium hexammine trichloride (RHT)-mediated interaction between plasmalemmal components and pericellular matrix proteoglycans is responsible for the preservation of chondrocytic plasma membranes in situ during cartilage fixation. J Histochem Cytochem 31:717–727

Iozzo RV (1984) Biosynthesis of heparan sulfate proteoglycan by human colon carcinoma cells and its localization at the cell surface. J Cell Biol 99:403–417

Iozzo RV (1985) Proteoglycans: Structure, function and role in neoplasia. Lab Invest 53:373–396

Kao WWY, Berg RA, Prockop DJ (1977) Kinetics for the secretion of procollagen by freshly isolated tendon cells. J Biol Chem 252:8391–8397

Karnovsky MJ (1965) A formaldehyde-gluteraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137a

Kim JJ, Conrad HE (1982) Proteochondroitin sulfate synthesis in subcultured chick embryo tibial chondrocytes. J Biol Chem 257:1670–1675

Kimata K, Okayama M, Suzuki S, Suzuki I, Hoshino M (1971) Nascent mucopolysaccharides attached to the Golgi membrane of chondrocytes. Biochim Biophys Acta 237:606–610

Kimura JH, Hardingham TE, Hascall VC, Solursh M (1979) Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem 254:2600–2609

Kimura JH, Caputo CB, Hascall VC (1981) The effect of cycloheximide on synthesis of proteoglycans by cultured chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem 256:4368–4376

Lodish HF, Kong N, Snider M, Strous GJAM (1983) Hepatoma secretory proteins migrate from the rough endoplasmic reticulum to the Golgi at characteristic rates. Nature 304:80–83

Meier S, Solursh M (1978) Ultrastructural analysis of the effect of ascorbic acid on secretion and assembly of extracellular matrix by cultured chick embryo chondrocytes. J Ultrastruct Res 65:48–59

Nist C, von der Mark K, Hay ED, Olsen BR, Bornstein P, Ross R, Dehm P (1975) Location of procollagen in chick corneal and tendon fibroblasts with ferritin-conjugated antibodies. J Cell Biol 65:75–87

Noro A, Kimata K, Oike Y, Shinomura T, Maeda N, Yano S, Tanahashi N, Suzuki S (1983) Isolation and characterization of a third proteoglycan (Pg-Lt) from chick embryo cartilage which contains disulfide-bonded collagenous polypeptide. J Biol Chem 258:9323–9331

Oettinger HF, Sasse J, Holtzer H, Pacifici M (1985) Immunological analysis of chick notochord and cartilage matrix development with antisera to cartilage matrix macromolecules. Dev Biol 109:63–71

Okayama M, Pacifici M, Holtzer H (1976) Differences among sulfated proteoglycans synthesized by non-chondrogenic cells, presumptive chondroblasts and chondroblasts. Proc Natl Acad Sci USA 73:3224–3228

Olsen BR, Prockop DJ (1974) Ferritin-conjugated antibodies used for labeling of organelles involved in the cellular synthesis and transport of procollagen. Proc Natl Acad Sci USA 71:2033–2037

Pacifici M, Fellini SA, Holtzer H, De Luca S (1981) Changes in the sulfated proteoglycan synthesized by “aging” chondrocytes. I. Dispersed cultured chondrocytes and in vivo cartilages. J Biol Chem 256:1029–1037

Pacifici M, Soltesz R, Thal G, Shanley DJ, Boettiger D, Holtzer H (1983) Immunological characterization of the major chick cartilage proteoglycan and its intracellular localization in cultured chondroblasts: a comparison with Type II procollagen. J Cell Biol 97:1724–1736

Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:347–358

Pesciotta DM, Dickson LA, Showalter AM, Eikenberry EF, De Crombrugghe B, Fietzek PP, Olsen BR (1981) Primary structure of the carbohydrate-containing regions of the carboxyl propeptides of Type I procollagen. FEBS Lett 125:170–174

Prockop DJ, Kivirikko KT, Tuderman L, Guzman NA (1979) The biosynthesis of collagen and its disorders. N Engl J Med 301:13–23

Ratcliffe A, Fryer PR, Hardingham TE (1984) The distribution of aggregating proteoglycans in articular cartilage. Comparison of quantitative immunoelectron microscopy with radioimmunoassay and biochemical analysis. J Histochem Cytochem 32:193–201

Reale E, Luciano L, Kuhn K (1983) Ultrastructural architecture of proteoglycans in the glomerular basement membrane. A cytochemical approach. J Histochem Cytochem 31:662–668

Reale E, Luciano L, Kuhn K (1985) Cationic dyes reveal proteoglycans on the surface of epithelial and endothelial cells. Histochemistry 82:513–518

Roth J, Berger EG (1982) Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol 93:223–227

Rothman JE, Fries E, Dunphy WG, Urbani LJ (1981) The Golgi apparatus, coated vesicles, and the sorting problem. Cold Spring Harb Symp Quant Biol 46:797–805

Schiltz JR, Mayne R, Holtzer H (1973) The synthesis of collagen and glycosaminoglycans by dedifferentiated chondroblasts in culture. Differentiation 1:97–107

Scott JE (1980) Collagen-proteoglycan interactions. Localization of proteoglycans in tendon by electron microscopy. Biochem J 187:887–891

Shepard N, Mitchell N (1976) The localization of proteoglycan by light and electron microscopy using safranine O. J Ultrastruct Res 54:451–460

Shinomura T, Kimata K, Oike Y, Noro A, Hirose N, Tanabe K, Suzuki S (1983) The occurrence of three different proteoglycan species in chick embryo cartilage. Isolation and characterization of a second proteoglycan (PG-Lb) and its precursor form. J Biol Chem 258:9314–9322

Silbert JW, Freilich LS (1980) Biosynthesis of chondroitin sulfate by Golgi-apparatus-enriched preparation from cultures of mouse mastocytoma cells. Biochem J 190:307–313

Sommarin Y, Heinegard D (1983) Specific interaction between cartilage proteoglycans and hyaluronic acid at the chondrocyte cell surface. Biochem J 214:777–784

Stefanini M, De Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in the identification of spirochetes. J Histochem Cytochem 18:315–333

Strous GJAM, Lodish HF (1980) Intracellular transport of secretory and membrane proteins in hepatoma cells infected by vesicular stomatitis virus. Cell 22:709–717

Strous GJAM, Van Kerkhof P, Willemsen R, Geuze HJ, Berger EG (1983) Transport and topology of galactosyltransferase in endomembranes of HeLa cells. J Cell Biol 97:723–727

Thyberg J, Lomhander LS, Friberg U (1973) Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J Ultrastruct Res 45:407–427

Vertel BM, Morrell JJ, Barkman LL (1985) Immunofluorescence studies on cartilage matrix synthesis. The synthesis of link protein, chondroitin sulfate proteoglycan monomer and Type II collagen. Exp Cell Res 158:423–432

Weinstock M, Leblond CP (1974) Synthesis, migration, and release of precursor collagen by odontoblasts as visualized by radioautography after [3H]proline administration. J Cell Biol 60:92–127