Ultrastructural changes ofSaccharomyces cerevisiaein response to ethanol stress

Canadian Journal of Microbiology - Tập 59 Số 9 - Trang 589-597 - 2013
Manli Ma1, Pei Han1, Ruimin Zhang1, Hao Li1
1College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, People’s Republic of China.

Tóm tắt

In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract – peptone – dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.

Từ khóa


Tài liệu tham khảo

10.1016/j.ijfoodmicro.2006.02.002

10.1083/jcb.200405102

10.1038/nbt1297-1351

10.1016/j.biotechadv.2007.09.002

10.1111/j.1567-1364.2009.00569.x

10.1111/j.1567-1364.2009.00482.x

10.1016/j.ijfoodmicro.2007.11.083

10.1371/journal.pbio.0040423

10.1111/j.1574-6968.2005.00089.x

10.1099/00221287-143-5-1649

10.1074/jbc.M109.005181

10.1016/j.numecd.2005.05.003

10.1007/s00253-009-2223-1

10.1371/journal.pone.0002623

10.1016/0891-5849(93)90035-S

10.1016/0003-9861(59)90090-6

10.1007/BF02426954

10.1128/MMBR.66.2.300-372.2002

10.1007/s00253-010-2758-1

10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.3.CO;2-J

10.1074/jbc.M802403200

10.1263/jbb.102.288

Krause E.L., 2007, Ind. Biotechnol. (New Rochelle, N.Y.), 3, 260

10.1271/bbb.68.968

10.1016/j.bbagen.2008.03.008

Lang F., 1998, Physiol. Rev., 78, 247, 10.1152/physrev.1998.78.1.247

10.1016/j.bbamcr.2008.08.003

10.1007/s00253-010-2594-3

10.1016/j.jbiosc.2009.08.500

10.1016/S0014-5793(02)02819-3

10.1002/(SICI)1097-0061(19990915)15:12<1211::AID-YEA448>3.0.CO;2-H

10.1128/MCB.14.8.5569

Nielsen F., 1997, Clin. Chem., 43, 1209, 10.1093/clinchem/43.7.1209

10.1016/S0168-6496(03)00049-7

10.1371/journal.pone.0011113

10.1371/journal.pone.0023696

10.1210/edrv-14-2-133

10.1111/j.1364-5072.2009.04657.x

10.1007/s10295-009-0655-3

10.1074/jbc.M604042200

10.1128/EC.00238-07

10.1007/s00253-008-1698-5

10.1016/j.jbiotec.2010.06.019

10.1042/BST0330294

10.1016/j.jbiotec.2009.05.001