Ultrasound-assisted synthesis of water-soluble monosubstituted diruthenium compounds
Tài liệu tham khảo
Stephenson, 1966, New ruthenium carboxylate complexes, J. Inorg. Nucl. Chem., 28, 2285, 10.1016/0022-1902(66)80118-5
Bennett, 1969, Structure of tetra-n-butyratodiruthenium chloride, a compound with a strong metal-metal bond, Inorg. Chem., 8, 1, 10.1021/ic50071a001
Cotton, 2005
Liddle, 2015
Aquino, 2004, Recent developments in the synthesis and properties of diruthenium tetracarboxylates, Coord. Chem. Rev., 248, 1025, 10.1016/j.ccr.2004.06.016
Cortijo, 2019, The use of amidinate ligands in paddlewheel diruthenium chemistry, Coord. Chem. Rev., 400, 213040, 10.1016/j.ccr.2019.213040
P.A. Angaridis, F.A. Cotton, C.A. Murillo, A.S. Filato, M.A. Petrukhina, Diruthenium Formamidinato Complexes, in: Inorganic Syntheses, John Wiley & Sons, Inc., 2014: pp. 114–121.
Angaridis, 2004, Paramagnetic precursors for supramolecular assemblies: selective syntheses, crystal structures, and electrochemical and magnetic properties of Ru2(O2CMe)4-n(formamidinate)nCl complexes, n = 1–4, Inorg. Chem., 43, 8290, 10.1021/ic049108w
Kato, 2006, Room temperature oxidation of alcohols with 1atm dioxygen and air catalyzed by a novel three-dimensional microporous ruthenium(II, III) 4,4′,4″,4‴-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakisbenzoate tetrafluoroborate, Catal. Commun., 7, 673, 10.1016/j.catcom.2006.02.011
Barker, 2008, Diruthenium(II, III) Bis(tetramethyl-1,3-benzenedipropionate) as a novel catalyst for tert-butyl hydroperoxide oxygenation, Inorg. Chem., 47, 2264, 10.1021/ic800035w
Harvey, 2011, A diruthenium catalyst for selective, intramolecular allylic C-H amination: reaction development and mechanistic insight gained through experiment and theory, J. Am. Chem. Soc., 133, 17207, 10.1021/ja203576p
Nakae, 2013, Skeletal reorganization of enynes catalyzed by a Ru(II)–Ru(III) mixed-valence complex under an atmosphere of O2 or CO, Chem. Lett., 42, 1565, 10.1246/cl.130785
Lee, 2015, Complexation of Tetrakis(acetato)chloridodiruthenium with Naphthyridine-2,7-dicarboxylate – Characterization and Catalytic Activity, Eur. J. Inorg. Chem., 2015, 1417, 10.1002/ejic.201403156
Berry, 2015, Metal–metal multiple bonded intermediates in catalysis, J. Chem. Sci., 127, 209, 10.1007/s12039-015-0773-6
Lupi, 2017, Diruthenium diacetate catalysed aerobic oxidation of hydroxylamines and improved chemoselectivity by immobilisation to lysozyme, ChemCatChem, 9, 4225, 10.1002/cctc.201701083
Miyazawa, 2020, Chiral paddle-wheel diruthenium complexes for asymmetric catalysis, Nat. Catal., 3, 851, 10.1038/s41929-020-00513-w
D. de Oliveira Silva, Ruthenium Compounds Targeting Cancer Therapy, in: Frontiers in Anti-Cancer Drug Discovery, Bentham Science Publishers, 2014: pp. 88–156.
Hanif-Ur-Rehman, 2016, Axially-modified paddlewheel diruthenium(II, III)-ibuprofenato metallodrugs and the influence of the structural modification on U87MG and A172 human glioma cell proliferation, apoptosis, mitosis and migration, J. Inorg. Biochem., 165, 181, 10.1016/j.jinorgbio.2016.10.003
Alves Rico, 2017, Diruthenium(II, III), metallodrugs of ibuprofen and naproxen encapsulated in intravenously injectable polymer–lipid nanoparticles exhibit enhanced activity against breast and prostate cancer cells, Nanoscale, 9, 10701, 10.1039/C7NR01582H
Barresi, 2020, A mixed-valence diruthenium(II, III) complex endowed with high stability: from experimental evidence to theoretical interpretation, Dalton Trans., 49, 14520, 10.1039/D0DT02527E
Santos, 2013, Kinetic and mechanistic studies on reactions of diruthenium(II, III) with biologically relevant reducing agents, Dalton Trans., 42, 16796, 10.1039/c3dt51763b
Messori, 2014, Unusual structural features in the lysozyme derivative of the Tetrakis(acetato)chloridodiruthenium(II, III) Complex, Angew. Chem. Int. Ed., 53, 6172, 10.1002/anie.201403337
Lozano, 2016, Fingerprinting the junctions of RNA structure by an open-paddlewheel diruthenium compound, RNA, 22, 330, 10.1261/rna.054353.115
Messori, 2017, Protein metalation by metal-based drugs: X-ray crystallography and mass spectrometry studies, Chem. Commun., 53, 11622, 10.1039/C7CC06442J
Valentín-Pérez, 2018, Coordination capacity of cytosine, adenine and derivatives towards open-paddlewheel diruthenium compounds, J. Inorg. Biochem., 187, 109, 10.1016/j.jinorgbio.2018.06.010
Coloma, 2020, pH- and time-dependent release of phytohormones from diruthenium complexes, Inorg. Chem., 59, 7779, 10.1021/acs.inorgchem.0c00844
Angaridis, 2005, Structural and magnetic evidence concerning spin crossover in formamidinate compounds with Ru25+ cores, J. Am. Chem. Soc., 127, 5008, 10.1021/ja050828r
Barral, 2005, A spin-admixed ruthenium complex, Angew. Chem. Int. Ed., 44, 305, 10.1002/anie.200461463
Cotton, 2007, How small variations in crystal interactions affect macroscopic properties, J. Am. Chem. Soc., 129, 12666, 10.1021/ja075808z
Barral, 2010, Tuning the magnetic moment of [Ru2(DPhF)3(O2CMe)L]+ Complexes (DPhF=N, N′-Diphenylformamidinate): a theoretical explanation of the axial ligand influence, Chem. Eur. J., 16, 6203, 10.1002/chem.200903404
Raghavan, 2020, Drastic tuning of the electronic structures of diruthenium Aryl complexes by isoelectronic axial ligands, Inorg. Chem., 59, 8663, 10.1021/acs.inorgchem.0c01755
Zhang, 2021, A metal–organic framework that exhibits CO2-induced transitions between paramagnetism and ferrimagnetism, Nat. Chem., 13, 191, 10.1038/s41557-020-00577-y
Estiú, 1999, Electronic, magnetic, and spectroscopic properties of binuclear diruthenium tetracarboxylates: a theoretical and experimental study, Inorg. Chem., 38, 3030, 10.1021/ic981098+
Jiménez-Aparicio, 2001, Magnetic properties of diruthenium(II, III) carboxylate compounds with large zero-field splitting and strong antiferromagnetic coupling, Inorg. Chem., 40, 613, 10.1021/ic0001154
Mikuriya, 2006, Magnetic interactions in one-, two-, and three-dimensional assemblies of dinuclear ruthenium carboxylates, Coord. Chem. Rev., 250, 2194, 10.1016/j.ccr.2006.01.011
Chiarella, 2014, Manipulating magnetism: Ru25+ paddlewheels devoid of axial interactions, J. Am. Chem. Soc., 136, 9580, 10.1021/ja5020647
Van Caemelbecke, 2021, Electrochemistry of metal-metal bonded diruthenium complexes, Coord. Chem. Rev., 434, 213706, 10.1016/j.ccr.2020.213706
Herrero, 2010, First microwave synthesis of multiple metal-metal bond paddlewheel compounds, Green Chem., 12, 965, 10.1039/c003411h
Herrero, 2011, Microwave methods for the synthesis of paddlewheel diruthenium compounds with N, N-donor ligands, Green Chem., 13, 1885, 10.1039/c0gc00800a
Delgado, 2012, Comparative study of different methods for the preparation of tetraamidato- and tetracarboxylatodiruthenium compounds, Structural and magnetic characterization, Dalton Trans., 41, 11866, 10.1039/c2dt30939d
Cortijo, 2015, Microwave and solvothermal methods for the synthesis of nickel and ruthenium complexes with 9-anthracene carboxylate ligand, Inorg. Chim. Acta., 424, 176, 10.1016/j.ica.2014.07.063
González-Prieto, 2017, Microwave-assisted solvothermal synthesis of inorganic compounds (molecular and non molecular)
Delgado-Martínez, 2017, Synthesis crystal structure, and magnetic properties of amidate and carboxylate dimers of ruthenium, Crystals, 7, 192, 10.3390/cryst7070192
Delgado-Martínez, 2014, Structural, magnetic and electrical properties of one-dimensional tetraamidatodiruthenium compounds, Dalton Trans., 43, 3227, 10.1039/C3DT52727A
Delgado-Martínez, 2014, Synthesis of Ru2Br(μ-O2CC6H4–R)4 (R = o-Me, m-Me, p-Me) using microwave activation: structural and magnetic properties, Inorganics, 2, 524, 10.3390/inorganics2030524
Cotton, 1998, Synthesis and characterization of the series of compounds Ru2(O2CMe)x(admp)4-xCl (Hadmp = 2-Amino-4,6-dimethylpyridine, x = 3, 2, 1, 0), Inorg. Chem., 37, 2723, 10.1021/ic971428a
Kachi-Terajima, 2002, Structure and electrochemistry of the bridging-ligand mono-substituted diruthenium compound, [Ru2(II, III)(O2CCH3)3(admpym)(Cl)(MeOH)] (Hadmpym=2-amino-4,6-dimethylpyrimidine), Inorg. Chim. Acta., 332, 210, 10.1016/S0020-1693(02)00712-0
Osterloh, 2020, Synthesis, structural and physicochemical properties of water-soluble mixed-ligand diruthenium complexes containing anilinopyridinate bridging ligands, Inorg. Chem., 59, 584, 10.1021/acs.inorgchem.9b02838
Kadish, 2008, Electrochemical and spectroscopic characterization of a series of mixed-ligand diruthenium compounds, Inorg. Chem., 47, 11423, 10.1021/ic8017369
Gracia, 2010, Synthesis and characterisation of diruthenium paddlewheel compounds bearing 2,6-Di(p-tolyl)benzoate ligands, J. Clust. Sci., 21, 339, 10.1007/s10876-010-0310-1
Sekine, 2016, trans-Heteroleptic carboxylate-bridged paddlewheel diruthenium(II, II) complexes with 2,6-bis(trifluoromethyl)benzoate ligands, Dalton Trans., 45, 7427, 10.1039/C6DT00569A
Chatel, 2019, Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry, Green Chem., 21, 6043, 10.1039/C9GC02534K
Banerjee, 2017, Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles, Ultrason. Sonochem., 35, 15, 10.1016/j.ultsonch.2016.10.010
Li, 2021, Sonochemical fabrication of inorganic nanoparticles for applications in catalysis, Ultrason. Sonochem., 71, 105384, 10.1016/j.ultsonch.2020.105384
Yao, 2020, Power ultrasound and its applications: a state-of-the-art review, Ultrason. Sonochem., 62, 104722, 10.1016/j.ultsonch.2019.104722
Li, 2020, Enhancing magnetic hardness by sonication assisted synthesis of heterometallic carbonato spin-glass Na[Ni(H2O)4Ru2(CO3)4]·3H2O, Chem. Commun., 56, 1369, 10.1039/C9CC07876B
Chen, 2005, Selective ligand modification on the periphery of diruthenium compounds: toward new metal-alkynyl scaffolds, Organometallics, 24, 2660, 10.1021/om050068t
Barral, 2006, Equatorially connected diruthenium(II,III) units toward paramagnetic supramolecular structures with singular magnetic properties, Inorg. Chem., 45, 3639, 10.1021/ic052174t
Barral, 2004, Preparation, characterization, and crystal structure of [Ru2Cl(μ-O2CMe)(μ-PhNCHNPh)3]: a way to tris(formamidinato)diruthenium(II, III) complexes, Inorg. Chem. Commun., 7, 42, 10.1016/j.inoche.2003.09.016
Frizzo, 2016, Sonochemical heating profile for solvents and ionic liquid doped solvents, and their application in the N-alkylation of pyrazoles, Ultrason. Sonochem., 32, 432, 10.1016/j.ultsonch.2016.03.014
Norman, 1979, Electronic structure of Ru2(O2CR)4+ and Rh2(O2CR)4+ complexes, J. Am. Chem. Soc., 101, 5256, 10.1021/ja00512a025
Cukiernik, 1998, Mixed-valent diruthenium long-chain carboxylates. 2. magnetic properties, Inorg. Chem., 37, 3698, 10.1021/ic971366o
Telser, 1984, Reinvestigation of the electronic and magnetic properties of ruthenium butyrate chloride, Inorg. Chem., 23, 3114, 10.1021/ic00188a019
J. Telser R.S. Drago Correction: Reinvestigation of the electronic and magnetic properties of ruthenium butyrate chloride Inorg. Chem. 24 1985 4765 4765.
Groom, 2016, The cambridge structural database, Acta Crystallogr. B., 72, 171, 10.1107/S2052520616003954
Chakravarty, 1985, Syntheses, molecular structures, and properties of two polar diruthenium(II, III) complexes of 2-hydroxypyridine and 2-anilinopyridine, Inorg. Chem., 24, 172, 10.1021/ic00196a011
Bear, 1997, Inorg. Chem., 36, 5449, 10.1021/ic9602658
Kadish, 2003, Factors affecting the electrochemical and spectroelectrochemical properties of diruthenium(III,II) complexes containing four identical unsymmetrical bridging ligands, Inorg. Chem., 42, 834, 10.1021/ic020590x
Kadish, 2003, Solvent effects on the electrochemistry and spectroelectrochemistry of diruthenium complexes. Studies of Ru2(L)4Cl where L = 2-CH3ap, 2-Fap, and 2,4,6-F3ap, and ap is the 2-anilinopyridinate anion, Inorg. Chem., 42, 8309, 10.1021/ic034722d
Kadish, 2006, Synthesis, characterization, and electrochemistry of diruthenium(III,II) and monoruthenium(III) complexes containing pyridyl-substituted 2-anilinopyridinate ligands, Inorg. Chem., 45, 5996, 10.1021/ic060267k
Cummings, 2010, Diruthenium phenylacetylide complexes bearing para-/meta-amino phenyl substituents, Organometallics, 29, 2783, 10.1021/om100263c
Manowong, 2014, Effect of axial ligands on the spectroscopic and electrochemical properties of diruthenium compounds, Inorg. Chem., 53, 7416, 10.1021/ic5007605