Tăng cường hoạt động và tính chất của enzyme hỗ trợ bởi siêu âm: một bài tổng quan ngắn

Shamraja S. Nadar1, Virendra K. Rathod1
1Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India

Tóm tắt

Trong thập kỷ qua, kỹ thuật siêu âm đã nổi lên như một công nghệ tiềm năng với nhiều ứng dụng trong các quy trình thực phẩm và sinh học phân tử. Trước đây, siêu âm được sử dụng như một phương pháp để bất hoạt enzyme, nhưng gần đây, người ta phát hiện ra rằng siêu âm không làm bất hoạt mọi enzyme, đặc biệt là trong các điều kiện nhẹ. Đã có bằng chứng cho thấy việc sử dụng điều trị siêu âm với tần số và cường độ thích hợp có thể dẫn đến sự tăng cường hoạt động của enzyme do các thay đổi cấu hình thuận lợi trong phân tử protein mà không làm thay đổi tính toàn vẹn cấu trúc của nó. Bài tổng quan hiện tại trình bày cái nhìn tổng quan về ảnh hưởng của các tham số bức xạ siêu âm (cường độ, chu kỳ làm việc và tần số) cũng như các yếu tố liên quan đến enzyme (nồng độ enzyme, nhiệt độ và pH) đối với hoạt động xúc tác của enzyme trong quá trình điều trị siêu âm. Ngoài ra, nó còn đề cập đến ảnh hưởng của siêu âm đối với các tham số động lực học nhiệt và các tham số động lực học Michaelis–Menten (km và Vmax) của enzyme. Hơn nữa, trong bài tổng quan này, các tác động vật lý và hóa học của siêu âm đối với enzyme đã được liên hệ với các tham số thermodynamic (năng lượng và entropy). Nhiều kỹ thuật được sử dụng để điều tra các thay đổi cấu hình trong enzyme sau khi được điều trị bằng siêu âm đã được làm nổi bật. Cuối cùng, các kỹ thuật khác nhau để cố định enzyme đã được điều trị bằng siêu âm đã được tóm tắt.

Từ khóa

#siêu âm #enzyme #hoạt động xúc tác #tham số động lực học Michaelis-Menten #cố định enzyme

Tài liệu tham khảo

Baltacıoğlu H, Bayındırlı A, Severcan F (2017) Secondary structure and conformational change of mushroom polyphenol oxidase during thermosonication treatment by using FTIR spectroscopy. Food Chem 214:507–514 Banerjee B (2017) Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason Sonochem 35:1–14 Bansode SR, Rathod VK (2017) An investigation of lipase catalysed sonochemical synthesis: a review. Ultrason Sonochem 38:503–529 Bashari M, Eibaid A, Wang J, Tian Y, Xu X, Jin Z (2013a) Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrason Sonochem 20:155–161 Bashari M, Wang P, Eibaid A, Tian Y, Xu X, Jin Z (2013b) Ultrasound-assisted dextranase entrapment onto Ca-alginate gel beads. Ultrason Sonochem 20:1008–1016 Basto C, Silva CJ, Gübitz G, Cavaco-Paulo A (2007) Stability and decolourization ability of Trametes villosa laccase in liquid ultrasonic fields. Ultrason Sonochem 14:355–362 Batistella L, Ustra MK, Richetti A, Pergher S, Treichel H, Oliveira J, Lerin L, de Oliveira D (2012) Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation. Bioprocess Biosyst Eng 35:351–358 Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394 Chowdhury SK, Eshraghi J, Wolfe H, Diane F, Allan G, David J (1995) Mass spectrometric identification of amino acid transformations during oxidation of peptides and proteins: modifications of methionine and tyrosine. Anal Chem 67:390–398 Delgado-Povedano MM, Luque de Castro MD (2015) A review on enzyme and ultrasound: a controversial but fruitful relationship. Anal Chim Acta 889:1–21 Duan X, Zhou J, Qiao S, Wei H (2011) Application of low intensity ultrasound to enhance the activity of anammox microbial consortium for nitrogen removal. Bioresour Technol 102:4290–4293 Eibaid A, Bashari M, Miao M, Jiang B (2014) Effect of ultrasound radiation on the activity of cyclodextrin glucanotransferase. J Acad Ind Res 2:573–577 Ercan SS, Soysal C (2011) Effect of ultrasound and temperature on tomato peroxidase. Ultrason Sonochem 18:689–695 Gogate PR, Kabadi AM (2009) A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J 44:60–72 Goncalves I, Silva C, Cavaco-Paulo A (2015) Ultrasound enhanced laccase applications. Green Chem 17:1362–1374 Guiseppi-Elie A, Choi SH, Geckeler KE (2009) Ultrasonic processing of enzymes: effect on enzymatic activity of glucose oxidase. J Mol Catal B Enzym 58:118–123 Gülseren I, Güzey D, Bruce BD, Weiss J (2007) Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason Sonochem 14:173–183 Hanefeld U, Cao L, Magner E (2013) Enzyme immobilisation: fundamentals and application. Chem Soc Rev 42:6211 Hoshino Y, Kawasaki T, Okahata Y (2006) Effect of ultrasound on DNA polymerase reactions: monitoring on a 27-MHz quartz crystal microbalance. Biomacromolecules 7:682–685 Huang G, Chen S, Dai C, Ling S, Wenli S, Yingxiu T, Feng X, Ronghai H (2017) Effects of ultrasound on microbial growth and enzyme activity. Ultrason Sonochem 37:144–149 Islam MN, Zhang M, Adhikari B (2014) The inactivation of enzymes by ultrasound—a review of potential mechanisms. Food Rev Int 30:1–21 Jadhav SH, Gogate PR (2014) Intensification in the activity of lipase enzyme using ultrasonic irradiation and stability studies. Ind Eng Chem Res 53:1377–1385 Jambrak AR, Mason TJ, Lelas V, Larysa P, Zoran H (2014) Effect of ultrasound treatment on particle size and molecular weight of whey proteins. J Food Eng 121:15–23 Kentish S, Ashokkumar M (2011) The physical and chemical effects of ultrasound. Ultrasound Technol Food Bioprocess. doi:10.1007/978-1-4419-7472-3_1 Khan NR, Rathod VK (2015) Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review. Process Biochem 50:1793–1806 Ladole MR, Mevada JS, Pandit AB (2017) Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresour Technol 239:117–126 Leaes EX, Lima D, Miklasevicius L, Adriana P, ValériaDal P, Mariana M, Lisiane M, Marcio A (2013) Effect of ultrasound-assisted irradiation on the activities of α-amylase and amyloglucosidase. Biocatal Agric Biotechnol 2:21–25 Ma H, Huang L, Jia J, Ronghai H, Wenxue Z (2011) Effect of energy-gathered ultrasound on Alcalase. Ultrason Sonochem 18:419–424 Ma X, Wang W, Zou M, Ding T, Ye X, Liu D (2015) Properties and structures of commercial polygalacturonase with ultrasound treatment: role of ultrasound in enzyme activation. RSC Adv 5:107591–107600 Ma X, Zhang L, Wang W, Zou M, Ding T, Ye X, Liu D (2016) Synergistic effect and mechanisms of combining ultrasound and pectinase on pectin hydrolysis. Food Bioprocess Technol 9:1249–1257 Ma X, Wang D, Yin M, Lucente J, Wang W, Ding T, Ye X, Liu D (2017) Characteristics of pectinase treated with ultrasound both during and after the immobilization process. Ultrason Sonochem 36:1–10 Malani RS, Khanna S, Chakma S, Moholkar VS (2014) Mechanistic insight into sono-enzymatic degradation of organic pollutants with kinetic and thermodynamic analysis. Ultrason Sonochem 21:1400–1406 Nadar SS, Rathod VK (2016a) Sonochemical effect on activity and conformation of commercial lipases. Appl Biochem Biotechnol 181:1435–1453 Nadar SS, Rathod VK (2016b) Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzyme Microb Technol 83:78–87 Nadar SS, Rathod VK (2017) Facile synthesis of glucoamylase embedded metal-organic frameworks (glucoamylase-MOF) with enhanced stability. Int J Biol Macromol 95:511–519 Nadar SS, Gawas SD, Rathod VK (2016a) Self-assembled organic–inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability. Int J Biol Macromol 92:660–669 Nadar SS, Muley AB, Ladole MR, Joshi PU (2016b) Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. Int J Biol Macromol 84:69–78 Nadar SS, Pawar RG, Rathod VK (2017) Recent advances in enzyme extraction strategies: a comprehensive review. Int J Biol Macromol 111:931–957 O’Donnell CP, Tiwari BK, Bourke P, Cullen PJ (2010) Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci Technol 21:358–367 Özbek B, Ülgen KO (2000) The stability of enzymes after sonication. Process Biochem 35:1037–1043 Rao PR, Rathod VK (2015) Mapping study of an ultrasonic bath for the extraction of andrographolide from Andrographis paniculata using ultrasound. Ind Crops Prod 66:312–318 Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306 Sancheti SV, Gogate PR (2017) A review of engineering aspects of intensification of chemical synthesis using ultrasound. Ultrason Sonochem 36:527–543 Secundo F (2013) Conformational changes of enzymes upon immobilisation. Chem Soc Rev 42:6250–6261 Şener N, Kılıç Apar D, Özbek B (2006) A modelling study on milk lactose hydrolysis and β-galactosidase stability under sonication. Process Biochem 41:1493–1500 Shah S, Gupta MN (2008) The effect of ultrasonic pre-treatment on the catalytic activity of lipases in aqueous and non-aqueous media. Chem Cent J 2:1 Sojitra UV, Nadar SS, Rathod VK (2016a) A magnetic tri-enzyme nanobiocatalyst for fruit juice clarification. Food Chem 213:296–305 Sojitra UV, Nadar SS, Rathod VK (2016b) Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr Polym 157:677–685 Souza M, Mezadri ET, Zimmerman E et al (2013) Evaluation of activity of a commercial amylase under ultrasound-assisted irradiation. Ultrason Sonochem 20:89–94 Subhedar PB, Gogate PR (2013) Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review. Ind Eng Chem Res 52:11816–11828 Subhedar PB, Gogate PR (2014) Enhancing the activity of cellulase enzyme using ultrasonic irradiations. J Mol Catal B Enzym 101:108–114 Sulaiman AZ, Ajit A, Chisti Y (2013) Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose. Biotechnol Prog 29:1448–1457 Szabó OE, Csiszár E (2013) The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme. Carbohydr Polym 98:1483–1489 Talekar S, Ghodake V, Ghotage T, Rathod P, Deshmukh P, Nadar S, Mulla M, Ladole M (2012) Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresour Technol 123:542–547 Talekar S, Desai S, Pillai M, Nagavekar N, Ambarkar S, Surnis S, Ladole M, Nadar S, Mulla M (2013a) Carrier free co-immobilization of glucoamylase and pullulanase as combi-cross linked enzyme aggregates (combi-CLEAs). RSC Adv 3:2265–2271 Talekar S, Pandharbale A, Ladole M, Nadar S, Mulla M, Japhalekar K, Pattankude K, Arage D (2013b) Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-cleas): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour Technol 147:269–275 Talekar S, Nadar S, Joshi A, Joshi G (2014) Pectin cross-linked enzyme aggregates (pectin-CLEAs) of glucoamylase. RSC Adv 4:59444–59453 Talekar S, Joshi A, Kambale S, Jadhav S, Nadar S, Ladole M (2017) A tri-enzyme magnetic nanobiocatalyst with one pot starch hydrolytic activity. Chem Eng J 325:80–90 Tian ZM, Wan MX, Wang SP, Kang JQ (2004) Effects of ultrasound and additives on the function and structure of trypsin. Ultrason Sonochem 11:399–404 Tran DN, Balkus KJ (2011) Perspective of recent progress in immobilization of enzymes. ACS Catal 1:956–968 Wang J, Cao Y, Sun B, Wang C, Mo Y (2011) Effect of ultrasound on the activity of alliinase from fresh garlic. Ultrason Sonochem 18:534–540 Wang Z, Lin X, Li P, Zhang J, Wang S, Ma H (2012) Effects of low intensity ultrasound on cellulase pretreatment. Bioresour Technol 117:222–227 Yu ZL, Zeng WC, Lu XL (2013) Influence of ultrasound to the activity of tyrosinase. Ultrason Sonochem 20:805–809 Yu ZL, Zeng WC, Zhang WH et al (2014) Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin. Ultrason Sonochem 21:930–936