Phương pháp chiết xuất hỗ trợ bằng siêu âm kết hợp với vi chiết tản mát lỏng–lỏng (US-DLLME) — Một phương pháp nhanh mới để đo lường các chuyển hóa phthalate trong móng tay

Springer Science and Business Media LLC - Tập 408 - Trang 6169-6180 - 2016
Andreia Alves1,2, Guido Vanermen1, Adrian Covaci2, Stefan Voorspoels1
1Flemish Institute for Technological Research, VITO NV, Mol, Belgium
2Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium

Tóm tắt

Một phương pháp mới, nhanh chóng, thân thiện với môi trường dựa trên chiết xuất hỗ trợ bằng siêu âm kết hợp với vi chiết tản mát lỏng–lỏng (US-DLLME) đã được phát triển và tối ưu hóa để đánh giá nồng độ của bảy chuyển hóa phthalate (bao gồm mono(ethyl hexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5-OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5-oxo-MEHP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP) và mono-benzyl phthalate (MBzP)) trong móng tay người bằng UPLC-MS/MS. Việc tối ưu hóa phương pháp US-DLLME được thực hiện thông qua thiết kế tổ hợp Taguchi (mảng L9). Nhiều tham số như dung môi chiết xuất, thể tích dung môi, thời gian chiết xuất, axit, nồng độ axit và thời gian xoay vòng đã được nghiên cứu. Các điều kiện chiết xuất tối ưu đạt được là 180 μL trichloroethylene (dung môi chiết xuất), 2 mL axit trifluoroacetic trong methanol (2 M), 2 giờ chiết xuất và 3 phút thời gian xoay vòng. Phương pháp tối ưu hóa có độ chính xác cao (6–17 %). Độ chính xác dao động từ 79 đến 108 % và giới hạn định lượng của phương pháp (LOQm) dưới 14 ng/g cho tất cả các hợp chất. Phương pháp US-DLLME được phát triển đã được áp dụng để xác định các chuyển hóa mục tiêu ở 10 cá nhân người Bỉ. Nồng độ của các chất phân tích đo được trong móng tay dao động giữa <12 và 7982 ng/g. MEHP, các đồng phân MBP và MEP là các chuyển hóa chính và được phát hiện trong tất cả các mẫu. Việc thu nhỏ kích thước (thể tích dung môi hữu cơ thấp), chi phí thấp, tốc độ và sự đơn giản là những lợi thế chính của phương pháp dựa trên US-DLLME này.

Từ khóa

#US-DLLME #chiết xuất hỗ trợ bằng siêu âm #phthalate #chuyển hóa trong móng tay #UPLC-MS/MS

Tài liệu tham khảo

Alves A, Kucharska A, Erratico C, Xu F, Den Hond E, Koppen G, et al. Human biomonitoring of emerging pollutants through noninvasive matrices: state of the art and future potential. Anal Bioanal Chem. 2014;406:4063–88. Braun JM, Just AC, Williams PL, Smith KW, Calafat AM, Hauser R. Personal care product use and urinary phthalate metabolite and paraben concentrations during pregnancy among women from a fertility clinic. J Exp Sci Environ Epidemiol. 2013;24:459–66. Adibi JJ, Perera FP, Jedrychowski W, Camann DE, Barr D, Jacek R, et al. Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ Health Perspect. 2003;111:1719–22. Barr DB, Silva MJ, Kato K, Reidy JA, Malek NA, Hurtz D, et al. Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers. Environ Health Perspect. 2003;111:1148–51. Wittassek M, Koch HM, Angerer J, Brüning T. Assessing exposure to phthalates—the human biomonitoring approach. Mol Nutr Food Res. 2011;55:7–31. Romero-Franco M, Hernández-Ramírez RU, Calafat AM, Cebrián ME, Needham L, Teitelbaum S, et al. Personal care product use and urinary levels of phthalate metabolites in Mexican women. Environ Int. 2011;37:867–71. Koch HM, Lorber M, Christensen KLY, Pälmke C, Koslitz S, Brüning T. Identifying sources of phthalate exposure with human biomonitoring: results of a 48h fasting study with urine collection and personal activity patterns. Int J Hyg Environ Health. 2013;216:672–81. Hauser R, Calafat AM. Phthalates and human health. Occup Environ Med. 2005;62:806–18. Foster PMD, Lake BG, Thomas LV, Cook MW, Gangolli SD. Studies on the testicular effects and zinc excretion produced by various isomers of monobutyl-ortho-phthalate in the rat. Chem Biol Interact. 1981;34:233–8. Saravanabhavan G, Murray J. Human biological monitoring of diisononyl phthalate and diisodecyl phthalate: a review. J Environ Public Health. 2012;2012:810501. Ventrice P, Ventrice D, Russo E, De Sarro G. Phthalates: European regulation, chemistry, pharmacokinetic, and related toxicity. Environ Toxicol Pharmacol. 2013;36:88–96. Koch HM, Christensen KLY, Harth V, Lorber M, Brüning T. Di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral doses. Arch Toxicol. 2012;86:1829–39. Peck CC, Albro PW. Toxic potential of the plasticizer Di(2-ethylhexyl) phthalate in the context of its disposition and metabolism in primates and man. Environ Health Perspect. 1982;45:11–7. Wittassek M, Angerer J. Phthalates: metabolism and exposure. Int J Androl. 2008;31:131–8. Blount BC, Silva MJ, Caudill SP, Needham LL, Pirkle JL, Sampson EJ, et al. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect. 2000;108:979–82. Bornehag C-G, Lundgren B, Weschler CJ, Singsgaard T, Hagerhed-Engman L, Sundell J. Phthalates in indoor dust and their association with building characteristics. Environ Health Perspect. 2005;113:1399–404. Abb M, Heinrich T, Sorkau E, Lorenz W. Phthalates in house dust. Environ Int. 2009;35:965–70. Directive 2005/90/EC relating to restrictions on the marketing and use of certain dangerous substances and preparations (substances classified as carcinogenic, mutagenic, or toxic to reproduction—c/m/r). L33/28 Directive 2003/36/EC relating to restrictions on the marketing and use of certain dangerous substances and preparations (substances classified as carcinogens, mutagens or substances toxic to reproduction). L156/26 Directive 2005/84/EC relating to restrictions on the marketing and use of certain dangerous substances and preparations (phthalates in toys and childcare articles). L 344/40 Directive 2004/93/EC amending Council Directive 76/768/EEC for the purpose of adapting its Annexes II and III to technical progress. L 300/13 Commission Regulation (EC) N) 552/2009 amending Regulation (EC) No. 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) as regards Annex XVII. 2009 Frederiksen H, Jørgensen N, Andersson A-M. Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol. 2010;34:400–10. Huang P-C, Kuo P-L, Guo Y-L, Pao-Chi L, Ching-Chang L. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod. 2007;22:2715–22. Preuss R, Koch HM, Angerer J. Biological monitoring of the five major metabolites of di-(2-ethylhexyl)phthalate (DEHP) in human urine using column-switching liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;816:269–80. Kato K, Silva MJ, Wolf C, Gray LE, Needham LL, Calafat AM. Urinary metabolites of diisodecyl phthalate in rats. Toxicology. 2007;236:114–22. Kondo F, Ikai Y, Hayashi R, Okumura M, Takatori S, Nakazawua H, et al. Determination of five phthalate monoesters in human urine using gas chromatography-mass spectrometry. Bull Environ Contam Toxicol. 2010;85:92–6. Servaes K, Voorspoels S, Lievens J, Noten B, Allaerts K, Van De Weghe H, et al. Direct analysis of phthalate ester biomarkers in urine without preconcentration: method validation and monitoring. J Chromatogr A. 2013;1294:25–32. Chang YJ, Lin KL, Chang YZ. Determination of Di-(2 ethylhexyl)phthalate (DEHP) metabolites in human hair using liquid chromatography-tandem mass spectrometry. Clin Chim Acta. 2013;420:155–9. Hines EP, Calafat AM, Silva MJ, Mendola P, Fenton SE. Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women. Environ Health Perspect. 2009;117:86–92. Silva MJ, Reidy JA, Samandar E, Herbert AR, Needham LL, Calafat AM. Detection of phthalate metabolites in human saliva. Arch Toxicol. 2005;79:647–52. Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A. 2006;1116:1–9. Han D, Row KH. Trends in liquid-phase microextraction and its application to environmental and biological samples. Microchim Acta. 2011;176:1–22. Alves ACH, Gonçalves MPB, Bernardo MMS, Mende B. Dispersive liquid–liquid microextraction of organophosphorous pesticides using nonhalogenated solvents. J Sep Sci. 2012;35:2653–8. Alves ACH, Gonçalves MPB, Bernardo MMS, Mende B. Validated dispersive liquid–liquid microextraction for analysis of organophosphorous pesticides in water. J Sep Sci. 2011;34:1326–32. Ghani JA, Choudhury IA. Application of Taguchi method in the optimization of end milling parameters. J Mater Process Technol. 2004;145:84–92. Albero B, Sánchez-Brunete C, García-Valcárcel AI, Pérez RA, Tadeo JL. Ultrasound-assisted extraction of emerging contaminants from environmental samples. Trends Anal Chem. 2015;71:110–8. Guo L, Lee HK. Vortex-assisted micro-solid-phase extraction followed by low-density solvent based dispersive liquid–liquid microextraction for the fast and efficient determination of phthalate esters in river water samples. J Chromatogr A. 2013;1300:24–30. Cinelli G, Avino P, Notardonato I, Centola A, Russo MV. Rapid analysis of six phthalate esters in wine by ultrasound-vortex-assisted dispersive liquid–liquid micro-extraction coupled with gas chromatography-flame ionization detector or gas chromatography-ion trap mass spectrometry. Anal Chim Acta. 2013;769:72–8. Pérez-Outeiral J, Millán E, Garcia-Arrona R. Determination of phthalate in food simulants and liquid samples using ultrasound-assisted dispersive liquid–liquid microextraction followed by solidification of floating organic drop. Food Control. 2016;62:171–7. Viñas P, Campillo N, Pastor-Belda P, Oller A, Hernández-Córdoba M. Determination of phthalate esters in cleaning and personal care products by dispersive liquid–liquid microextraction and liquid chromatography-tandem. J Chromatogr A. 2015;1376:18–25. Sun J-N, Shi Y-P, Chen J. Simultaneous determination of plasticizer di(2-ethylhexyl)phthalate and its metabolite in human urine by temperature controlled ionic liquid dispersive liquid–liquid microextraction combined with high performance liquid chromatography. Anal Methods. 2013;5:1427–34. Taguchi G, Yokoyama Y. Taguchi methods: design of experiments. Tokyo: American Supplier Institute, Dearborn MI: in conjunction with the Japanese Standards Association; 1994. Munegumi T. Where is the border line between strong acids and weak acids? World J Chem Educ. 2013;1:12–6.