Ultrasonic infrared thermography in non-destructive testing: A review

M. Z. Umar1, В. П. Вавилов2, Huda Abdullah1, Ahmad Kamal Ariffin1
1National University of Malaysia, Bangi, Selangor, Malaysia
2National Research Tomsk Polytechnic University, Tomsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Henneke, E.G., Reifsnider, K.L., and Stinchcomb, W.W., Thermography, an NDI method for damage detection, J. Met., 1979, pp. 11–15.

Gleiter, A., Riegert, G., Zweschper, Th., and Busse, G., Ultrasound lock-in thermography for advanced depth resolved defect selective imaging, Insight (Northampton, U.K.), 2007, vol. 49, no. 5, pp. 272–274.

Reifsnider, K.L., Henneke, E.G., and Stinchcomb, W.W., The Mechanics of Vibrothermography, Mechanics of Nondestructive Testing, Stinchcomb, W.W., Ed., New York: Plenum, 1980, pp. 249–276.

Mignogna, R.B., Green, R.E., Duke, J., Henneke, E.G., and Reifsnider, K.L., Thermographic investigation of high-power ultrasonic heating in materials, Ultrasonics, 1981, vol. 7, pp. 159–163.

Favro, L.D., Han, X., Ouyang, Z., Sun, G., Sui, H., and Thomas, R.L., IR imaging of cracks excited by an ultrasonic pulse, Proc. SPIE, 2000, vol. 4020, pp. 182–185.

Burke, M.W. and Miller, W.O., Status of VibroIR at Lawrence Livermore national laboratory, Proc. SPIE, 2004, vol. 5405, pp. 313–321.

Holland, S.D., Uhl, C., Renshaw, J. and Towards, A., Viable strategy for estimating vibrothermographic probability of detection, Rev. Quant. Nondestr. Eval., 2008, vol. 27, pp. 491–497.

Holland, S.D., First measurements from a new broadband vibrothermography measurement system, Rev. Quant. Nondestr. Eval., 2007, vol. 2, pp. 478–483.

Hiremath, S.R., Mahapatra, R., and Srinivasan, S., Detection of crack in metal plate by thermo sonic wave based detection using FEM, J. Exp. Stroke Transl. Med., 2012, vol. 1, no. 1, pp. 12–18.

Solodov, I. and Busse, G., Resonance ultrasonic thermography: highly efficient contact and air-coupled remote modes, Appl. Phys. Lett., 2013, vol. 102, no. 6, art. 061905.

Pye, C.J. and Adams, R.D., Detection of damage in fiber reinforced plastics using thermal fields generated during resonant vibration, NDT Int., 1981, vol. 14, no. 3, pp. 111–118.

Vavilov, V.P., Khorev, V.S., and Chulkov, A.O., Ultrasonic infrared testing of impact damage in composites: analysis of peculiarities, Kontrol’. Diagnostika, 2012, no. 13, pp. 197–201.

Vavilov, V.P., Chulkov, A.O., and Derusova, D.A., IR thermographic characterization of low energy impact damage in carbon/carbon composite by applying optical and ultrasonic stimulation, Proc. SPIE, 2014, vol. 9105, p. 91050J.

Han, X., Li, W., Zeng, Z., Favro, L.D., and Thomas, R.L., Acoustic chaos and sonic infrared imaging, Appl. Phys. Lett., 2002, vol. 81, pp. 3188–3190.

Shepard, S.M., Ahmed, T., and Lhota, J., Experimental considerations in vibrothermography, Proc. SPIE, 2004, vol. 5405, pp. 332–335.

Rizi, A.S., Hedayatrasa, S., Maldague, X., and Vukhanh, T., FEM modeling of ultrasonic vibrothermography of damaged plate and qualitative study of heating mechanisms, Infrared Phys. Technol., 2013, vol. 61, pp. 101–110.

Pieczonka, L., Szwedo, M., and Uhl, T., Vibrothermography—measurement system development and testing, Diagnostyka, 2011, vol. 2, no. 58, pp. 61–66.

Zweschper, T.H., Dillenz, A., Riegert, G., Scherling, D., and Busse, G., Ultrasound excited thermography using frequency modulated elastic waves, Insight (Northampton, U.K.), 2003, vol. 45, no. 3, pp. 1–5.

Vavilov, V.P. and Burleigh, D.D., Review of pulsed thermal NDT: physical principles, theory and data processing, NDT&E Int., 2015, vol. 73, pp. 28–52.

Mabrouki, F., Thomas, M., Genest, M., and Fahr, A., Frictional heating model for efficient use of vibrothermography, NDT&E Int., 2009, vol. 42, pp. 345–352.

Ganesan, R. and Muthupandian, A., Simulation of heat generation from vibration in COMSOL multiphysics, Proc. of the COMSOL Conf. 2010, Bangalore, India, 2010.

Mian, A., Han, X., Islam, S., and Newaz, G., Fatigue damage detection in graphite/epoxy composites using sonic infrared imaging technique, Compos. Sci. Technol., 2004, vol. 64, pp. 657–666.

Pieczonka, L.J., Staszewski, W.J., Aymerich, F., Uhl, T., and Szwedo, M., Numerical simulations for impact damage detection in composites using vibrothermography, IOP Conf. Ser.: Mater. Sci. Eng., 2010, no. 10, pp. 1–8.

Derusova, D.A., Vavilov, V.P., and Pawar, S.S., Evaluation of equivalent defect heat generation in carbon epoxy composite under powerful ultrasonic stimulation by using infrared thermography, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 81, p. 012084.

Rantala, J., Wu, D., Salerno, A., and Busse, G., Lock-in thermography with mechanical loss angle heating at ultrasonic frequencies, Proc. Conference on Quantitative Infrared Thermography (QIRT’97), Eurotherm Seminar, 1997, vol. 50, pp. 388–393.

Favro, L.D., Han, X., Ouyang, Z., Sun, G., Sui, H., and Thomas, R.L., Infrared imaging of defects heated by a sonic pulse, Rev. Sci. Instrum., 2000, vol. 71, pp. 2418–2421.

Han, X., Zeng, Z., Li, W., Islam, S., Lu, J., Loggins, V., Yitamben, E., Favro, L.D., Newaz, G., and Thomas, R.L., Acoustic chaos for enhanced detectability of cracks by sonic infrared imaging, J. Appl. Phys., 2004, vol. 95, no. 7, pp. 3792–3797.

Zalameda, J.N., Winfree, W.P., and Yost, W.T., Air coupled acoustic thermography (ACAT) inspection technique, AIP Conf. Proc., 2008, vol. 975, pp. 467–474.

Almond, D.P., Weekes, B., Li, T., Pickering, S.G., Kostson, E., Wilson, J., Tian, G.Y., Dixon, S., and Burrows, S., Thermographic techniques for the detection of cracks in metallic components, Insight (Northampton, U.K.), 2011, vol. 53, no. 11, pp. 614–620.

Szwedo, M., Pieczonka, L., and Uhl, T., Vibrothermographic testing of structures, Key Eng. Mater., 2012, vol. 518, pp. 418–427.

Guo, Y. and Ruhge, F.R., Comparison of detection capability for acoustic thermography, visual inspection and fluorescent penetrant inspection on gas turbine components, Rev. Quant. Nondestr. Eval., 2009, vol. 28, pp. 1848–1854.

Guo, X. and Vavilov, V.P., Crack detection in aluminum parts by using ultrasound excited infrared thermography, Infrared Phys. Technol., 2013, vol. 61, pp. 149–156.