Ultrasonic and Conventional Fatigue Endurance of Aeronautical Aluminum Alloy 7075-T6, with Artificial and Induced Pre-Corrosion
Tóm tắt
Từ khóa
Tài liệu tham khảo
Prasad, N.E., Gokhale, A.A., and Wanhill, R.J.H. (2013). Aerospace applications of aluminum-lithium alloys. Aluminum-Lithium Alloys, Processing, Properties and Applications, Butterworth-Heinemann, Elsevier Inc.
Zhang, 2018, Recent advances in the development of aerospace materials, Prog. Aerosp. Sci., 97, 22, 10.1016/j.paerosci.2018.01.001
Jawalkar, 2015, A Review on use of Aluminium Alloys in Aircraft Components, i-Manager’s J. Mater. Sci., 3, 33
Rambabu, P., Eswara Prasad, N., Kutumbarao, V.V., and Wanhill, R.J.H. (2016). Aluminium Alloys for Aerospace Applications. Aerospace Materials and Material Technologies, Springer.
Codaro, 2002, An image analysis study of pit formation on TiÁ 6AlÁ 4V, Mater. Sci. Eng., 341, 202, 10.1016/S0921-5093(02)00218-6
DuQuesnay, 2003, Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading, Int. J. Fatigue, 25, 371, 10.1016/S0142-1123(02)00168-8
Jones, 2009, The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075-T6 aluminum alloy, Int. J. Fatigue, 31, 686, 10.1016/j.ijfatigue.2008.03.016
Molent, 2015, Managing airframe fatigue from corrosion pits—A proposal, Eng. Fract. Mech., 137, 12, 10.1016/j.engfracmech.2014.09.001
Wang, 2003, Effect of pitting corrosion on very high cycle fatigue behavior, Scr. Mater., 49, 711, 10.1016/S1359-6462(03)00365-8
2019, Numerical investigation of the stress concentration on 7075-T651 aluminum alloy with one or two hemispherical pits under uniaxial or biaxial loading, Adv. Eng. Softw., 131, 23, 10.1016/j.advengsoft.2018.09.013
Pao, 2000, On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy, Scr. Mater., 43, 391, 10.1016/S1359-6462(00)00434-6
2006, Fatigue crack growth and thresholds at ultrasonic frequencies, Int. J. Fatigue, 28, 1456, 10.1016/j.ijfatigue.2005.06.058
Ambriz, 2012, Fatigue endurance and crack propagation under rotating bending fatigue tests on aluminum alloy AISI 6063-T5 with controlled corrosion attack, Eng. Fract. Mech., 93, 119, 10.1016/j.engfracmech.2012.06.012
Deng, G., Nagamoto, K., Nakano, Y., and Nakanishi, T. (2009). Evaluation of the Effect of Surface Roughness on Crack Initiation Life, Natural Resources Canada. ICF12.
Singh, 2019, A microstructure based approach to model effects of surface roughness on tensile fatigue, Int. J. Fatigue, 129, 105229, 10.1016/j.ijfatigue.2019.105229
Lai, 2016, Effects of microstructure and surface roughness on the fatigue strength of high-strength steels, Proc. Struct. Integr., 2, 1213
Sankaran, 2001, Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: Modeling and experimental studies, Mater. Sci. Eng. A, 297, 223, 10.1016/S0921-5093(00)01216-8
Shi, 2001, Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction, Eng. Fract. Mech., 68, 1493, 10.1016/S0013-7944(01)00041-8
Jakubowski, 2015, Influence of pitting corrosion on fatigue and corrosion fatigue of ship and offshore structures, Part II—Pit—Crack Interaction, Pol. Marit. Res., 22, 57, 10.1515/pomr-2015-0057
Genel, 2007, The effect of pitting on the bending fatigue performance of high-strength aluminum alloy, Scr. Mater., 57, 297, 10.1016/j.scriptamat.2007.04.045
Azar, 2010, The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer’s solution, Surf. Coat. Technol., 204, 3546, 10.1016/j.surfcoat.2010.04.015
Ribeiro, 2011, Moiré Interferometry assessement of residual stress variation in depth on a shot peened surface, Strain, 47, e542, 10.1111/j.1475-1305.2009.00653.x
Lovrec, 2020, Development of linear servo hydraulic drive for material testing, International Conference “New Technologies, Development and Applications”, Volume 128, 104
Muminovic, 2015, Numerical analysis of stress concentration factors, Proc. Eng., 100, 707, 10.1016/j.proeng.2015.01.423
Yan, 2017, Numerical simulation of the double pits stress concentration in a curved casing inner surface, Adv. Mech. Eng., 9, 1, 10.1177/1687814016682652
Pederson, 2010, Stress concentrations in keyways and optimization of keyway des, J. Strain Anal. Eng. Des., 45, 593, 10.1177/030932471004500804
Sukumar, 2004, Finite element-based model for crack propagation in polycrystalline materials, Comput. Appl. Math., 23, 363
Baydoun, 2012, Crack propagation criteria in three dimensions using the XFEM and an explicit–implicit crack description, Int. J. Fract., 178, 51, 10.1007/s10704-012-9762-7
Fu, 2012, Generalized displacement correlation method for estimating stress intensity factors, Eng. Fract. Mech., 88, 90, 10.1016/j.engfracmech.2012.04.010
Ashoaibi, 2008, Evaluation of stress intensity factor using displacement correlation techniques, J. Kejuruter., 20, 75, 10.17576/jkukm-2008-20-07
Newman, J.C., Wu, X.R., Venneri, S., and Li, C. (1994). Small-Crack Effects in High-Strength Aluminum Alloys, NASA RP-1309.
Newman, J.C., Phillips, E.P., and Everett, R.A. (1999). Analysis of Fatigue and Fatigue Crack Growth under Constant-and Variable Amplitude Loading, NASA/TM-1999–209329.
Newman, 2015, Fatigue and crack-growth analyses under gigacycle loading on aluminium alloys, Proc. Eng., 101, 339, 10.1016/j.proeng.2015.02.041
Huang, 2010, Subsurface crack initiation and propagation mechanisms in gigacycle fatigue, Acta Mater., 58, 6046, 10.1016/j.actamat.2010.07.022
Wang, 2012, Current understanding of ultra-high cycle fatigue, Theor. Appl. Mech. Lett., 2, 031002, 10.1063/2.1203102