Ultrasonic Backscatter Difference Measurement of Bone Health in Preterm and Term Newborns

Ultrasound in Medicine & Biology - Tập 46 - Trang 305-314 - 2020
Chengcheng Liu1, Boyi Li2, Ying Li2, Weiying Mao3, Chao Chen3, Rong Zhang3, Dean Ta2,4
1Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
2Department of Electronic Engineering, Fudan University, Shanghai, China
3Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
4Academy for Engineering & Technology, Fudan University, Shanghai, China

Tài liệu tham khảo

Akcakus, 2006, The relationship among intrauterine growth, insulinlike growth factor I (IGF-I), IGF-binding protein-3, and bone mineral status in newborn infants, Am J Perinatol, 23, 473, 10.1055/s-2006-954822 Avila-Dı́az, 2001, Increments in whole body bone mineral content associated with weight and length in pre-term and full-term infants during the first 6 months of life, Arch Med Res, 32, 288, 10.1016/S0188-4409(01)00291-0 Backström, 1996, Metabolic bone disease of prematurity, Ann Med, 28, 275, 10.3109/07853899608999080 Backström, 2000, Bone isoenzyme of serum alkaline phosphatase and serum inorganic phosphate in metabolic bone disease of prematurity, Acta Paediatr, 89, 867, 10.1111/j.1651-2227.2000.tb00395.x Barden, 1988, Bone densitometry in infants, J Pediatr, 113, 172, 10.1016/S0022-3476(88)80607-3 Barkmann, 2010, Femur ultrasound (FemUS)—First clinical results on hip fracture discrimination and estimation of femoral BMD, Osteoporos Int, 21, 969, 10.1007/s00198-009-1037-4 Baroncelli, 2006, Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development, Bone, 39, 159, 10.1016/j.bone.2005.12.010 Betto, 2014, Assessment of bone health in preterm infants through quantitative ultrasound and biochemical markers, J Matern Fetal Neonatal Med, 27, 1343, 10.3109/14767058.2013.858317 Brooke, 1985, Metabolic bone disease in preterm infants, Arch Dis Child, 60, 682, 10.1136/adc.60.7.682 Chaffai, 2002, Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: Relationships to density and microstructure, Bone, 30, 229, 10.1016/S8756-3282(01)00650-0 Chen, 2010, Assisted exercise improves bone strength in very low birthweight infants by bone quantitative ultrasound, J Paediatr Child Health, 46, 653, 10.1111/j.1440-1754.2010.01822.x Chen, 2012, Bone status and associated factors measured by quantitative ultrasound in preterm and full-term newborn infants, Early Hum Dev, 88, 617, 10.1016/j.earlhumdev.2012.01.008 Conversano, 2015, A novel ultrasound methodology for estimating spine mineral density, Ultrasound Med Biol, 41, 281, 10.1016/j.ultrasmedbio.2014.08.017 Faerk, 2002, Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate, Arch Dis Child Fetal Neonatal Ed, 87, F133, 10.1136/fn.87.2.F133 Fewtrell, 2008, Quantitative ultrasound (QUS): A useful tool for monitoring bone health in preterm infants?, Acta Paediatr, 97, 1625, 10.1111/j.1651-2227.2008.00992.x Fink, 1983, Ultrasonic signal processing for in vivo attenuation measurement: Short time Fourier analysis, Ultrason Imaging, 5, 117 Garra, 2009, Measurements of ultrasonic backscattered spectral centroid shift from spine in vivo: Methodology and preliminary results, Ultrasound Med Biol, 35, 165, 10.1016/j.ultrasmedbio.2008.06.004 Gilsanz, 1998, Bone density in children: A review of the available techniques and indications, Eur J Radiol, 26, 177, 10.1016/S0720-048X(97)00093-4 Gonnelli, 2004, Feasibility of quantitative ultrasound measurements on the humerus of newborn infants for the assessment of the skeletal status, Osteoporos Int, 15, 541, 10.1007/s00198-003-1558-1 Haiat, 2008, Sensitivity of qus parameters to controlled variations of bone strength assessed with a cellular model, IEEE Trans Ultrason Ferroelectr Freq Control, 55, 1488, 10.1109/TUFFC.2008.824 Hakulinen, 2006, Ultrasonic characterization of human trabecular bone microstructure, Phys Med Biol, 51, 1633, 10.1088/0031-9155/51/6/019 Hans, 1996, Ultrasonographic heel measurements to predict hip fracture in elderly women: The EPIDOS prospective study, Lancet, 348, 511, 10.1016/S0140-6736(95)11456-4 Hoffmeister, 2012, A backscatter difference technique for ultrasonic bone assessment, J Acoust Soc Am, 132, 4069, 10.1121/1.4763992 Hoffmeister, 2016, Backscatter difference measurements of cancellous bone using an ultrasonic imaging system, Ultrason Imaging, 38, 285, 10.1177/0161734615603703 Hoffmeister, 2017, Effect of gate choice on backscatter difference measurements of cancellous bone, J Acoust Soc Am, 142, 540, 10.1121/1.4996140 Hoffmeister, 2018, Ultrasonic backscatter difference measurements of cancellous bone from the human femur: Relation to bone mineral density and microstructure, J Acoust Soc Am, 143, 3642, 10.1121/1.5043385 Jiang, 2014, Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in calcaneus in vivo for the ultrasonic evaluation of osteoporosis, Ultrasound Med Biol, 40, 1307, 10.1016/j.ultrasmedbio.2013.12.024 Kalkwarf, 2002, Bone mineral changes during pregnancy and lactation, Endocrine, 17, 49, 10.1385/ENDO:17:1:49 Karjalainen, 2009, Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone, Ultrasound Med Biol, 35, 1376, 10.1016/j.ultrasmedbio.2009.03.011 Karjalainen, 2012, Multi-site bone ultrasound measurements in elderly women with and without previous hip fractures, Osteoporos Int, 23, 1287, 10.1007/s00198-011-1682-2 Koo, 1996, Dual-energy X-ray absorptiometry studies of bone mineral status in newborn infants, J Bone Miner Res, 11 Kuc, 1980, Clinical application of an ultrasound attenuation coefficient estimation technique for liver pathology characterization, IEEE Trans Biomed Eng, 27, 312, 10.1109/TBME.1980.326739 Langton, 1996, Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation, Bone, 18, 495, 10.1016/8756-3282(96)00086-5 Li, 2018, Ultrasonic backscatter measurements at the calcaneus: An in vivo study, Measurement, 122, 128, 10.1016/j.measurement.2018.02.071 Liao, 2005, Bone measurements of infants in the first 3 months of life by quantitative ultrasound: The influence of gestational age, season, and postnatal age, Pediatr Radiol, 35, 847, 10.1007/s00247-005-1481-z Litmanovitz, 2003, Early physical activity intervention prevents decrease of bone strength in very low birth weight infants, Pediatrics, 112, 15, 10.1542/peds.112.1.15 Litniewski, 2012, Ultrasonic scanner for in vivo measurement of cancellous bone properties from backscattered data, IEEE Trans Ultrason Ferroelectr Freq Control, 59, 1470, 10.1109/TUFFC.2012.2347 Littner, 2003, Bone ultrasound velocity curves of newly born term and preterm infants, J Pediatr Endocrinol Metab, 16, 43, 10.1515/JPEM.2003.16.1.43 Littner, 2004, Decreased bone ultrasound velocity in large-for-gestational-age infants, J Perinatol, 24, 21, 10.1038/sj.jp.7211013 Liu, 2014, The relationship between ultrasonic backscatter and trabecular anisotropic microstructure in cancellous bone, J Appl Phys, 115 Liu, 2015, Signal of interest selection standard for ultrasonic backscatter in cancellous bone evaluation, Ultrasound Med Biol, 41, 2714, 10.1016/j.ultrasmedbio.2015.06.005 Liu, 2015, An ultrasonic backscatter instrument for cancellous bone evaluation in neonates, Engineering, 1, 336, 10.15302/J-ENG-2015079 Liu, 2016, Measurement of the human calcaneus in vivo using ultrasonic backscatter spectral centroid Shift, J. Ultrasound Med, 35, 2197, 10.7863/ultra.15.03030 Liu, 2018, Relationships of ultrasonic backscatter with bone densities and microstructure in bovine cancellous bone, IEEE Trans Ultrason Ferroelectr Freq Control, 65, 2311, 10.1109/TUFFC.2018.2872084 Liu, 2019, Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model, Chin Phys B, 28 Malo, 2014, Ultrasound backscatter measurements of intact human proximal femurs—Relationships of ultrasound parameters with tissue structure and mineral density, Bone, 64, 240, 10.1016/j.bone.2014.04.014 McDevitt, 2007, Quantitative ultrasound assessment of bone health in the neonate, Neonatology, 91, 2, 10.1159/000096965 McDevitt, 2005, Quantitative ultrasound assessment of bone in preterm and term neonates, Arch Dis Child Fetal Neonatal Ed, 90, F341, 10.1136/adc.2004.065276 Nallagonda, 2016, Metabolic bone disease of prematurity—An overview, Paediatr Child Health, 27, 14, 10.1016/j.paed.2016.10.004 Nemet, 2001, Quantitative ultrasound measurements of bone speed of sound in premature infants, Eur J Pediatr, 160, 736, 10.1007/s004310100849 Nicholson, 1998, Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone?, Bone, 23, 425, 10.1016/S8756-3282(98)00128-8 Nicholson, 2007, Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae, Clin Biomech, 22, 623, 10.1016/j.clinbiomech.2006.12.008 Njeh, 1997, Prediction of human femoral bone strength using ultrasound velocity and BMD: An in vitro study, Osteoporos Int, 7, 471, 10.1007/s001980050035 Padilla, 2006, Estimation of trabecular thickness using ultrasonic backcatter, Ultrason Imaging, 28, 3, 10.1177/016173460602800102 Pereda, 2003, The use of quantitative ultrasound in assessing bone status in newborn preterm infants, J Perinatol, 23, 655, 10.1038/sj.jp.7211006 Rack, 2012, Ultrasound for the assessment of bone quality in preterm and term infants, J Perinatol, 32, 218, 10.1038/jp.2011.82 Rauch, 2002, Skeletal development in premature infants: A review of bone physiology beyond nutritional aspects, Arch Dis Child Fetal Neonatal Ed, 86, F82, 10.1136/fn.86.2.F82 Rigo, 2000, Bone mineral metabolism in the micropremie, Clin Perinatol, 27, 147, 10.1016/S0095-5108(05)70011-7 Rigo, 2007, Enteral calcium, phosphate and vitamin D requirements and bone mineralization in preterm infants, Acta Paediatr, 96, 969, 10.1111/j.1651-2227.2007.00336.x Ritschl, 2005, Assessment of skeletal development in preterm and term infants by quantitative ultrasound, Pediatr Res, 58, 341, 10.1203/01.PDR.0000169996.25179.EC Roux, 2001, Ultrasonic backscatter and transmission parameters at the os calcis in postmenopausal osteoporosis, J Bone Miner Res, 16, 1353, 10.1359/jbmr.2001.16.7.1353 Rubinacci, 2003, Quantitative ultrasound for the assessment of osteopenia in preterm infants, Eur J Endocrinol, 149, 307, 10.1530/eje.0.1490307 Rustico, 2014, Metabolic bone disease of prematurity, J Clin Transl Endocrinol, 1, 85 Savino, 2013, Quantitative ultrasound applied to metacarpal bone in infants, PeerJ, 1, e141, 10.7717/peerj.141 Tang, 2016, Correlation between the combination of apparent integrated backscatter-spectral centroid shift and bone mineral density, J Med Ultrason, 43, 167, 10.1007/s10396-015-0690-9 Tansug, 2011, Changes in quantitative ultrasound in preterm and term infants during the first year of life, Eur J Radiol, 79, 428, 10.1016/j.ejrad.2010.03.001 Toyras, 2002, Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently, Bone, 31, 503, 10.1016/S8756-3282(02)00843-8 Wear, 2008, Ultrasonic scattering from cancellous bone: A review, IEEE Trans Ultrason Ferroelectr Freq Control, 55, 1432, 10.1109/TUFFC.2008.818 Wear, 2015, Nonlinear attenuation and dispersion in human calcaneus in vitro: Statistical validation and relationships to microarchitecture, J Acoust Soc Am, 137, 1126, 10.1121/1.4908310 Wear, 2000, The relationship between ultrasonic backscatter and bone mineral density in human calcaneus, IEEE Trans Ultrason Ferroelectr Freq Control, 47, 777, 10.1109/58.852057 Wear, 1998, Assessment of bone density using ultrasonic backscatter, Ultrasound Med Biol, 24, 689, 10.1016/S0301-5629(98)00040-4 Wear, 2003, The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: Theoretical and experimental results, IEEE Trans Ultrason Ferroelectr Freq Control, 50, 979, 10.1109/TUFFC.2003.1226542 Wear, 2012, Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro, J Acoust Soc Am, 131, 1605, 10.1121/1.3672701 Zhang, 2013, Feasibility of bone assessment with ultrasonic backscatter signals in neonates, Ultrasound Med Biol, 39, 1751, 10.1016/j.ultrasmedbio.2013.03.023