Ultrasensitive Heterojunctions of Graphene and 2D Perovskites Reveal Spontaneous Iodide Loss
Tài liệu tham khảo
Sutherland, 2016, Perovskite photonic sources, Nat. Photonics, 10, 295, 10.1038/nphoton.2016.62
Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340
Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014
Xiao, 2017, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics, 11, 108, 10.1038/nphoton.2016.269
Zhao, 2017, In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices, ACS Nano, 11, 3957, 10.1021/acsnano.7b00404
Jia, 2017, Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor, Nat. Photonics, 11, 784, 10.1038/s41566-017-0047-6
Gélvez-Rueda, 2017, Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites, J. Phys. Chem. C, 121, 26566, 10.1021/acs.jpcc.7b10705
Straus, 2018, Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties, J. Phys. Chem. Lett., 9, 1434, 10.1021/acs.jpclett.8b00201
Tsai, 2016, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells, Nature, 536, 312, 10.1038/nature18306
Chen, 2018, 2D Ruddlesden-Popper perovskites for optoelectronics, Adv. Mater., 30, 1703487, 10.1002/adma.201703487
Tian, 2017, Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing, ACS Nano, 11, 12247, 10.1021/acsnano.7b05726
Shi, 2018, Two-dimensional halide perovskite nanomaterials and heterostructures, Chem. Soc. Rev., 10.1039/C7CS00886D
Wang, 2017, Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion, Angew. Chem. Int. Ed., 56, 1190, 10.1002/anie.201603694
Berhe, 2016, Organometal halide perovskite solar cells: degradation and stability, Energy. Environ. Sci., 9, 323, 10.1039/C5EE02733K
Zhao, 2017, Electrical stress influences the efficiency of CH3NH3PbI3 perovskite light emitting devices, Adv. Mater., 29, 1605317, 10.1002/adma.201605317
Wang, 2016, Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour, Nat. Energy, 2, 16195, 10.1038/nenergy.2016.195
Conings, 2015, Intrinsic thermal instability of methylammonium lead trihalide perovskite, Adv. Energy Mater., 5, 1500477, 10.1002/aenm.201500477
Yuan, 2016, Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures, Adv. Energy Mater., 6, 1501803, 10.1002/aenm.201501803
Aristidou, 2015, The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers, Angew. Chem. Int. Ed., 54, 8208, 10.1002/anie.201503153
Kato, 2015, Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes, Adv. Mater. Interfaces, 2, 1500195, 10.1002/admi.201500195
Zhao, 2016, Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices, ACS Energy Lett., 1, 595, 10.1021/acsenergylett.6b00320
Lee, 2017, The role of grain boundaries in perovskite solar cells, Mater. Today Energy, 7, 149, 10.1016/j.mtener.2017.07.014
Sherkar, 2017, Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions, ACS Energy Lett., 2, 1214, 10.1021/acsenergylett.7b00236
Shao, 2016, Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films, Energy Environ. Sci., 9, 1752, 10.1039/C6EE00413J
Fan, 2017, Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates, Joule, 1, 548, 10.1016/j.joule.2017.08.005
Allen, 2010, Honeycomb carbon: a review of graphene, Chem. Rev., 110, 132, 10.1021/cr900070d
Schedin, 2007, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6, 652, 10.1038/nmat1967
Mao, 2013, Manipulating the electronic and chemical properties of graphene via molecular functionalization, Prog. Surf. Sci., 88, 132, 10.1016/j.progsurf.2013.02.001
Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233
Chiu, 2010, Controllable p-n junction formation in monolayer graphene using electrostatic substrate engineering, Nano Lett., 10, 4634, 10.1021/nl102756r
Barraza-Lopez, 2010, Effects of metallic contacts on electron transport through graphene, Phys. Rev. Lett., 104, 076807, 10.1103/PhysRevLett.104.076807
Bartolomeo, 2011, Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors, Nanotechnology, 22, 275702, 10.1088/0957-4484/22/27/275702
Nouchi, 2015, Competitive interfacial charge transfer to graphene from the electrode contacts and surface adsorbates, Appl. Phys. Lett., 106, 083107, 10.1063/1.4913669
Sun, 2017, Poly (ethylene imine)-modulated transport behaviors of graphene field effect transistors with double Dirac points, J. Appl. Phys., 121, 134305, 10.1063/1.4979687
Kim, 2014, The role of intrinsic defects in methylammonium lead iodide perovskite, J. Phys. Chem. Lett., 5, 1312, 10.1021/jz500370k
Yin, 2014, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 104, 063903, 10.1063/1.4864778
Xiao, 2015, Giant switchable photovoltaic effect in organometal trihalide perovskite devices, Nat. Mater., 14, 193, 10.1038/nmat4150
Ummadisingu, 2017, The effect of illumination on the formation of metal halide perovskite films, Nature, 545, 208, 10.1038/nature22072
Bunch, 2008, Impermeable atomic membranes from graphene sheets, Nano Lett., 8, 2458, 10.1021/nl801457b
Arora, 2017, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science, 358, 768, 10.1126/science.aam5655
Agresti, 2016, Graphene-perovskite solar cells exceed 18 % efficiency: a stability study, ChemSusChem, 9, 2609, 10.1002/cssc.201600942
Kakavelakis, 2017, Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer, Adv. Energy Mater., 7, 1602120, 10.1002/aenm.201602120
Shao, 2017, Stable graphene-two-dimensional multiphase perovskite heterostructure phototransistors with high gain, Nano Lett., 17, 7330, 10.1021/acs.nanolett.7b02980
Castellanos-Gomez, 2014, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater., 1, 011002, 10.1088/2053-1583/1/1/011002
Kerner, 2016, Ultrasmooth metal halide perovskite thin films via sol-gel processing, J. Mater. Chem. A, 4, 8308, 10.1039/C6TA03092K