Ultrasensitive Heterojunctions of Graphene and 2D Perovskites Reveal Spontaneous Iodide Loss

Joule - Tập 2 - Trang 2133-2144 - 2018
Lianfeng Zhao1, He Tian2, Scott H. Silver1, Antoine Kahn1, Tian-Ling Ren2, Barry P. Rand1,3
1Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
2Institute of Microelectronics & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
3Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA

Tài liệu tham khảo

Sutherland, 2016, Perovskite photonic sources, Nat. Photonics, 10, 295, 10.1038/nphoton.2016.62 Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340 Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014 Xiao, 2017, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics, 11, 108, 10.1038/nphoton.2016.269 Zhao, 2017, In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices, ACS Nano, 11, 3957, 10.1021/acsnano.7b00404 Jia, 2017, Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor, Nat. Photonics, 11, 784, 10.1038/s41566-017-0047-6 Gélvez-Rueda, 2017, Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites, J. Phys. Chem. C, 121, 26566, 10.1021/acs.jpcc.7b10705 Straus, 2018, Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties, J. Phys. Chem. Lett., 9, 1434, 10.1021/acs.jpclett.8b00201 Tsai, 2016, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells, Nature, 536, 312, 10.1038/nature18306 Chen, 2018, 2D Ruddlesden-Popper perovskites for optoelectronics, Adv. Mater., 30, 1703487, 10.1002/adma.201703487 Tian, 2017, Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing, ACS Nano, 11, 12247, 10.1021/acsnano.7b05726 Shi, 2018, Two-dimensional halide perovskite nanomaterials and heterostructures, Chem. Soc. Rev., 10.1039/C7CS00886D Wang, 2017, Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion, Angew. Chem. Int. Ed., 56, 1190, 10.1002/anie.201603694 Berhe, 2016, Organometal halide perovskite solar cells: degradation and stability, Energy. Environ. Sci., 9, 323, 10.1039/C5EE02733K Zhao, 2017, Electrical stress influences the efficiency of CH3NH3PbI3 perovskite light emitting devices, Adv. Mater., 29, 1605317, 10.1002/adma.201605317 Wang, 2016, Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour, Nat. Energy, 2, 16195, 10.1038/nenergy.2016.195 Conings, 2015, Intrinsic thermal instability of methylammonium lead trihalide perovskite, Adv. Energy Mater., 5, 1500477, 10.1002/aenm.201500477 Yuan, 2016, Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures, Adv. Energy Mater., 6, 1501803, 10.1002/aenm.201501803 Aristidou, 2015, The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers, Angew. Chem. Int. Ed., 54, 8208, 10.1002/anie.201503153 Kato, 2015, Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes, Adv. Mater. Interfaces, 2, 1500195, 10.1002/admi.201500195 Zhao, 2016, Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices, ACS Energy Lett., 1, 595, 10.1021/acsenergylett.6b00320 Lee, 2017, The role of grain boundaries in perovskite solar cells, Mater. Today Energy, 7, 149, 10.1016/j.mtener.2017.07.014 Sherkar, 2017, Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions, ACS Energy Lett., 2, 1214, 10.1021/acsenergylett.7b00236 Shao, 2016, Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films, Energy Environ. Sci., 9, 1752, 10.1039/C6EE00413J Fan, 2017, Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates, Joule, 1, 548, 10.1016/j.joule.2017.08.005 Allen, 2010, Honeycomb carbon: a review of graphene, Chem. Rev., 110, 132, 10.1021/cr900070d Schedin, 2007, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6, 652, 10.1038/nmat1967 Mao, 2013, Manipulating the electronic and chemical properties of graphene via molecular functionalization, Prog. Surf. Sci., 88, 132, 10.1016/j.progsurf.2013.02.001 Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233 Chiu, 2010, Controllable p-n junction formation in monolayer graphene using electrostatic substrate engineering, Nano Lett., 10, 4634, 10.1021/nl102756r Barraza-Lopez, 2010, Effects of metallic contacts on electron transport through graphene, Phys. Rev. Lett., 104, 076807, 10.1103/PhysRevLett.104.076807 Bartolomeo, 2011, Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors, Nanotechnology, 22, 275702, 10.1088/0957-4484/22/27/275702 Nouchi, 2015, Competitive interfacial charge transfer to graphene from the electrode contacts and surface adsorbates, Appl. Phys. Lett., 106, 083107, 10.1063/1.4913669 Sun, 2017, Poly (ethylene imine)-modulated transport behaviors of graphene field effect transistors with double Dirac points, J. Appl. Phys., 121, 134305, 10.1063/1.4979687 Kim, 2014, The role of intrinsic defects in methylammonium lead iodide perovskite, J. Phys. Chem. Lett., 5, 1312, 10.1021/jz500370k Yin, 2014, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 104, 063903, 10.1063/1.4864778 Xiao, 2015, Giant switchable photovoltaic effect in organometal trihalide perovskite devices, Nat. Mater., 14, 193, 10.1038/nmat4150 Ummadisingu, 2017, The effect of illumination on the formation of metal halide perovskite films, Nature, 545, 208, 10.1038/nature22072 Bunch, 2008, Impermeable atomic membranes from graphene sheets, Nano Lett., 8, 2458, 10.1021/nl801457b Arora, 2017, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science, 358, 768, 10.1126/science.aam5655 Agresti, 2016, Graphene-perovskite solar cells exceed 18 % efficiency: a stability study, ChemSusChem, 9, 2609, 10.1002/cssc.201600942 Kakavelakis, 2017, Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer, Adv. Energy Mater., 7, 1602120, 10.1002/aenm.201602120 Shao, 2017, Stable graphene-two-dimensional multiphase perovskite heterostructure phototransistors with high gain, Nano Lett., 17, 7330, 10.1021/acs.nanolett.7b02980 Castellanos-Gomez, 2014, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater., 1, 011002, 10.1088/2053-1583/1/1/011002 Kerner, 2016, Ultrasmooth metal halide perovskite thin films via sol-gel processing, J. Mater. Chem. A, 4, 8308, 10.1039/C6TA03092K