Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries

Nature Energy - Tập 5 Số 10 - Trang 786-793
Yusheng Ye1, Lien‐Yang Chou1, Yayuan Liu1, Hansen Wang1, Hiang Kwee Lee1, Wenxiao Huang1, Jiayu Wan1, Kai Liu1, Guangmin Zhou1, Yufei Yang1, Ankun Yang1, Xin Xiao1, Xin Gao1, David Boyle2, Hao Chen1, Wenbo Zhang1, Sang Cheol Kim1, Yi Cui3
1Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
2Department of Chemistry, Stanford University, Stanford, CA USA
3Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, Y. et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 16, 3616–3623 (2016).

Zhang, H., Yu, X. & Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277–281 (2011).

Li, Y. Q. et al. Lithium ion breathable electrodes with 3D hierarchical architecture for ultrastable and high-capacity lithium storage. Adv. Funct. Mater. 27, 1700447 (2017).

Li, N., Chen, Z., Ren, W., Li, F. & Cheng, H.-M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl Acad. Sci. 109, 17360–17365 (2012).

Sun, H. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019).

Liu, B. et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005–3011 (2012).

Yazici, M., Krassowski, D. & Prakash, J. Flexible graphite as battery anode and current collector. J. Power Sources 141, 171–176 (2005).

Zhamu, A., Jang, B. Z. & Chen, G. Large-grain graphene thin film current collector and secondary batteries containing same. US patent 9,484,160 (2016).

Wang, S. et al. Aluminum chloride-graphite batteries with flexible current collectors prepared from earth‐abundant elements. Adv. Sci. 5, 1700712 (2018).

Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

Wu, H., Zhuo, D., Kong, D. & Cui, Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 5, 5193 (2014).

Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

Liu, K. et al. Extending the life of lithium‐based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv. Mater. 29, 1603987 (2017).

Wang, Q. et al. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012).

Ribière, P. et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ. Sci. 5, 5271–5280 (2012).

Yeon, D., Lee, Y., Ryou, M.-H. & Lee, Y. M. New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochim. Acta 157, 282–289 (2015).

Yim, T. et al. Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness. Nano Lett. 15, 5059–5067 (2015).

Liu, K. et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 3, e1601978 (2017).

Yu, L., Miao, J., Jin, Y. & Lin, J. Y. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries. Front. Chem. Sci. Eng. 11, 346–352 (2017).

Baginska, M. et al. Autonomic shutdown of lithium‐ion batteries using thermoresponsive microspheres. Adv. Energy Mater. 2, 583–590 (2012).

Cui, Y. et al. A fireproof, lightweight, polymer–polymer solid-state electrolyte for safe lithium batteries. Nano Lett. 20, 1686–1692 (2020).

Wang, J. et al. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018).

Nakagawa, H. et al. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Sources 174, 1021–1026 (2007).

Zeng, Z. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3, 674 (2018).

Tsujikawa, T. et al. Characteristics of lithium-ion battery with non-flammable electrolyte. J. Power Sources 189, 429–434 (2009).

Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

Xia, L., Li, S.-L., Ai, X.-P., Yang, H.-X. & Cao, Y.-L. Temperature-sensitive cathode materials for safer lithium-ion batteries. Energy Environ. Sci. 4, 2845–2848 (2011).

Balakrishnan, P., Ramesh, R. & Kumar, T. P. Safety mechanisms in lithium-ion batteries. J. Power Sources 155, 401–414 (2006).

Chen, Z. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016).

Wang, H., Wang, T., Yang, S. & Fan, L. Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 54, 6339–6348 (2013).

Ma, P. et al. A review on high temperature resistant polyimide films: heterocyclic structures and nanocomposites. Compos. Commun. 16, 84–93 (2019).

Li, J. et al. Synthesis and characterization of porous polyimide films containing benzimidazole moieties. High. Perform. Polym. 29, 869–876 (2017).

Velencoso, M. M., Battig, A., Markwart, J. C., Schartel, B. & Wurm, F. R. Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew. Chem. Int. Ed. 57, 10450–10467 (2018).

Kränzlin, N., Ellenbroek, S., Durán‐Martín, D. & Niederberger, M. Liquid‐phase deposition of freestanding copper foils and supported copper thin films and their structuring into conducting line patterns. Angew. Chem. Int. Ed. 51, 4743–4746 (2012).

Barnat, E., Nagakura, D., Wang, P.-I. & Lu, T.-M. Real time resistivity measurements during sputter deposition of ultrathin copper films. J. Appl. Phys. 91, 1667–1672 (2002).

Xiao, J. et al. Fire retardant synergism between melamine and triphenyl phosphate in poly(butylene terephthalate). Polym. Degrad. Stabil. 91, 2093–2100 (2006).

Granzow, A. Flame retardation by phosphorus compounds. Acc. Chem. Res. 11, 177–183 (1978).

Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014).

Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium‐ion batteries. Adv. Mater. 30, 1800561 (2018).

Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

Hong, J. H., Lee, Y., Han, S. & Kim, K.-J. Improvement of adhesion properties for Cu films on the polyimide by plasma source ion implantation. Surf. Coat. Technol. 201, 197–202 (2006).

Kim, M.-H. & Lee, K.-W. The effects of ion beam treatment on the interfacial adhesion of Cu/polyimide system. Met. Mater. Int. 12, 425–433 (2006).