Cấu trúc sandwich l lattice loại X siêu nhẹ (II): Mô hình vi cơ và phân tích phần tử hữu hạn

QianCheng Zhang1, AiPing Chen2, ChangQing Chen2,3, TianJian Lu2
1State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an, China
2MOE Key Laboratory for Strength and Vibration, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
3Department of Engineering Mechanics, AML, Tsinghua University, Beijing, China

Tóm tắt

Các phương pháp đồng hóa và phần tử hữu hạn được sử dụng để dự đoán các hằng số đàn hồi hiệu quả và phản ứng ứng suất-biến dạng của một loại cấu trúc l lattice mới, cấu trúc X được đề xuất bởi các tác giả trong một tài liệu đồng hành. Đã chỉ ra rằng trong hầu hết các trường hợp, các dự đoán do lý thuyết đồng hóa tương đương đưa ra hoàn toàn nhất quán với kết quả thí nghiệm và kết quả tính toán phần tử hữu hạn ba chiều. Nghiên cứu lý thuyết và số học hỗ trợ lập luận rằng cấu trúc X vượt trội hơn cấu trúc l lattice kim tự tháp về mặt độ bền cơ học.

Từ khóa

#cấu trúc l lattice #đồng hóa #phân tích phần tử hữu hạn #hằng số đàn hồi #ứng suất-biến dạng #độ bền cơ học

Tài liệu tham khảo

Zhang Q C, Chen A P, Chen C, et al. Ultralight X-type lattice sandwich structure (I): Concept, fabrication and experimental characterization. Sci China Ser E-Tech Sci, 2009, 52(8): 2147–2157 Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals. Prog Mater Sci, 2001, 46(3–4): 309–327 Lu T J, He D P, Chen C, et al. The multi-functionality of multi-functionality of ultra-light porous metals and their applications (in Chinese). Adv Mech, 2006, 36(4): 517–535 Wadley H N G. Multifunctional periodic cellular metals. Phil Trans R Soc A, 2006, 364(1838): 31–68 Lu T J, Zhang Q C, Wang C Y, et al. Application of lightweight materials and structures in machine tools (in Chinese). Mech Eng, 2007, 29(6): 1–9 Fan H L, Yang W, Fang D N, et al. Interlacing technique for new carbon fiber lattice materials (in Chinese). J Aeronaut Mater, 2007, 27(01): 73–77 Lu T J, Liu T, Deng Z C. Multifunctional design of cellular metals: A review (in Chinese). Mech Eng, 2008, 30(1): 1–9 Lu T J, Liu T, Deng Z C. Thermoelastic properties of pin-reinforced sandwich foam cores. Sci China Ser E-Tech Sci, 2008, 51(2): 1–16 Fan H L, Yang W, Fang D N, et al. Interlacing technique for new carbon fiber lattice materials (in Chinese). J Aeronaut Mater, 2007, 27(01): 73–77 Zhang D L, Chen Z M, Xu M L, et al. Feasibility of ECT technique in NDT of ultralight lattice material of sandwich structure. Nondestr Test, 2008, 30(7): 704–711 Ashby M F, Evans A G, Fleck N A, et al. Metal Forms: A Design Guide. Boston: Butterworth-Heinemann, 2000 Lu T J, Hutchinson J W, Evans A G. Optimal design of a flexural actuator. J Mech Phys Solids, 2001, 49(9): 2071–2093 Gu S, Lu T J, Evans A G. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. Int J Heat Mass Transf, 2001, 44(11): 2163–2175 Wallach J C, Gibson L J. Mechanical behavior of a three-dimensional truss material. Int J Solid Struct, 2001, 38(40–41): 7181–7196 Sypeck D J, Wadley H N G. Cellular Metals and Metal Foaming Technology. Bremen: MIT-Verlag, 2001 Sypeck D J, Wadley H N G. Cellular metal truss core sandwich structures. Adv Eng Mater, 2002, 4(10): 759–764 Chiras S, Mumm D R, Evans A G, et al. The structural performance of near-optimized truss core panels. Int J Solid Struct, 2002, 39(15): 4093–4115 Sugimura Y. Mechanical response of single-layer tetrahedral trusses under shear loading. Mech Mater, 2004, 36(8): 715–721 Wicks N, Hutchinson J W. Performance of sandwich plates with truss cores. Mech Mater, 2004, 36(8): 739–751 Wallach J C, Gibson L J. Defect sensitivity of a 3D truss material. Scripta Mater, 2001, 45(6): 639–644 Deshpande V S, Fleck N A, Ashby M F. Effective properties of the octet-truss lattice material. J Mech Phys Solid, 2001, 49(8): 1747–1769 Zhou J, Shrotriya P, Soboyejo W O. On the deformation of aluminum lattice block structures: From struts to structures. Mech Mater, 2004, 36(8): 723–737 Hyun S, Torquato S. Optimal and manufacturable two-dimensional Kagome-like cellular solids. J Mater Res, 2002, 17(1): 137–144 Lee Y H, Lee B K, Jeon I, et al. Wire-woven bulk Kagome truss cores. Acta Mater, 2007, 55(18): 6084–6094 Sypeck D J, Wadley H N G. Multifunctional microtruss laminates: Textile synthesis and properties. J Mater Res, 2001, 16(3): 890–897 Zok F W, Rathbun H J, Wei Z, et al. Design of metallic textile core sandwich panels. Int J Solid Struct, 2003, 40(21): 5707–5722 Chiras S, Mumm D R, Evans A G, et al. The structural performance of near-optimized truss core panels. Int J Solid Struct, 2002, 39(15): 4093–4115 Zupan M, Deshpande V S, Fleck N A. The out-of-plane compressive behavior of woven-core sandwich plates. Euro J Mech A/Solids, 2004, 23(2): 411–421 Hill R. Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids, 1963, 11: 357–372 Hill R. Theory of mechanical properties of fibre-strengthened materials. J Mech Phys Solids, 1964, 12: 199–212 Hill R. Theory of mechanical properties of fibre-strengthened materials. J Mech Phys Solids, 1964, 12: 213–218 Hohe J, Becker W. Effective elastic properties of triangular grid structures. Comp Struc, 1999, 45(2): 131–145 Hohe J, Beschorner C, Becker W. Effective elastic properties of hexagonal and quadrilateral grid structures. Comp Struc, 1999, 46(1): 73–89 Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams. J Mech Phys Solids, 2000, 48(6–7): 1253–1283 Noor A K, Burton W S, Bert C W. Computational models for sandwich panels and shells. Appl Mech Rev, 1996, 4(3): 155–199 Straalen I J V. Comprehensive overview of theories for sandwich panels. Workshop on Modeling of Sandwich Structures and Adhesive Bonded Joints. http://www.dogma.org.uk/vtt, 2000 Mohr D. Mechanism-based multi-surface plasticity model for ideal truss lattice materials. Int J Solids Strut, 2005, 42(11–12): 3235–3260 Rabczuk T, Kim J Y, Samaniego E, et al. Homogenization of sandwich structures. Int J Numer Meth Eng, 2004, 61(7): 1009–1027 Hohe J, Becker W. Effective stress-strain relations for two-dimensional cellular sandwich cores: Homogenization, material models, and properties. Appl Mech Rev, 2002, 55: 61–87 Cheng Q H, Lee H P, Lu C. A numerical analysis approach for evaluating elastic constants of sandwich structures with various cores. Comp Struc, 2006, 74(2): 226–236 Mohr D. Mechanism-based multi-surface plasticity model for ideal truss lattice materials. Int J Solids Struc, 2005, 42(11–12): 3235–3260 Ziegler E, Accorsi M, Bennett M. Continuum plate model for lattice block. Mech Mater, 2004, 36(8): 753–766 Liu T, Deng Z C, Lu T J. Minimum weights of pressurized hollow sandwich cylinders with ultralight cellular cores. Int J Solids Strut, 2007, 44(10): 3231–3266 Hyun S, Karlsson A M, Torquato S, et al. Simulated properties of Kagome and tetragonal truss core panel. Int J Solids Struc, 2003, 40: 6989–6998 Wang J, Evans A G, Dharmasena K, et al. On the performance of truss panels with Kagome cores. Int J Solids Struc, 2003, 40: 6981–6988 Lim J H, Kang K J, Lim J H, et al. Mechanical behavior of sandwich panels with tetrahedral and Kagome truss cores fabricated from wires. Int J Solids Struc, 2006, 43(17): 5228–5246 Lai W M, Rubin D, Krempl E. Introduction to Continuum Mechanics. 3 ed. Pergamon: Elsevier Science Publisher, 1993 Kooistra G W, Wadley H N G. Lattice truss structures from expanded metal sheet. Mater Design, 2007, 28(2): 507–514 Deshpande V S, Fleck N A. Collapse of truss core sandwich beams in 3-point bending. Int J Solids Struct, 2001, 38: 6275–6305 Cai H C, Min X, Lin W. Mechanics of Materials. Xi’an: Xi’an Jiaotong University Publisher, 2002, 271–273 Chen C, Lu T J, Fleck N A. Effect of imperfections on the yielding of two-dimensional foams. J Mech Phys Solids, 1999, 47: 2235–2272 Li B C, Zhang Q C, Lu T J. Dynamic performance of truss core sandwich structures based on modal analysis experiments (in Chinese). Acta Mechanica Solida Sinica, 2008, 29(4): 373–378