Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cấu trúc sandwich l lattice loại X siêu nhẹ (II): Mô hình vi cơ và phân tích phần tử hữu hạn
Tóm tắt
Các phương pháp đồng hóa và phần tử hữu hạn được sử dụng để dự đoán các hằng số đàn hồi hiệu quả và phản ứng ứng suất-biến dạng của một loại cấu trúc l lattice mới, cấu trúc X được đề xuất bởi các tác giả trong một tài liệu đồng hành. Đã chỉ ra rằng trong hầu hết các trường hợp, các dự đoán do lý thuyết đồng hóa tương đương đưa ra hoàn toàn nhất quán với kết quả thí nghiệm và kết quả tính toán phần tử hữu hạn ba chiều. Nghiên cứu lý thuyết và số học hỗ trợ lập luận rằng cấu trúc X vượt trội hơn cấu trúc l lattice kim tự tháp về mặt độ bền cơ học.
Từ khóa
#cấu trúc l lattice #đồng hóa #phân tích phần tử hữu hạn #hằng số đàn hồi #ứng suất-biến dạng #độ bền cơ họcTài liệu tham khảo
Zhang Q C, Chen A P, Chen C, et al. Ultralight X-type lattice sandwich structure (I): Concept, fabrication and experimental characterization. Sci China Ser E-Tech Sci, 2009, 52(8): 2147–2157
Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals. Prog Mater Sci, 2001, 46(3–4): 309–327
Lu T J, He D P, Chen C, et al. The multi-functionality of multi-functionality of ultra-light porous metals and their applications (in Chinese). Adv Mech, 2006, 36(4): 517–535
Wadley H N G. Multifunctional periodic cellular metals. Phil Trans R Soc A, 2006, 364(1838): 31–68
Lu T J, Zhang Q C, Wang C Y, et al. Application of lightweight materials and structures in machine tools (in Chinese). Mech Eng, 2007, 29(6): 1–9
Fan H L, Yang W, Fang D N, et al. Interlacing technique for new carbon fiber lattice materials (in Chinese). J Aeronaut Mater, 2007, 27(01): 73–77
Lu T J, Liu T, Deng Z C. Multifunctional design of cellular metals: A review (in Chinese). Mech Eng, 2008, 30(1): 1–9
Lu T J, Liu T, Deng Z C. Thermoelastic properties of pin-reinforced sandwich foam cores. Sci China Ser E-Tech Sci, 2008, 51(2): 1–16
Fan H L, Yang W, Fang D N, et al. Interlacing technique for new carbon fiber lattice materials (in Chinese). J Aeronaut Mater, 2007, 27(01): 73–77
Zhang D L, Chen Z M, Xu M L, et al. Feasibility of ECT technique in NDT of ultralight lattice material of sandwich structure. Nondestr Test, 2008, 30(7): 704–711
Ashby M F, Evans A G, Fleck N A, et al. Metal Forms: A Design Guide. Boston: Butterworth-Heinemann, 2000
Lu T J, Hutchinson J W, Evans A G. Optimal design of a flexural actuator. J Mech Phys Solids, 2001, 49(9): 2071–2093
Gu S, Lu T J, Evans A G. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. Int J Heat Mass Transf, 2001, 44(11): 2163–2175
Wallach J C, Gibson L J. Mechanical behavior of a three-dimensional truss material. Int J Solid Struct, 2001, 38(40–41): 7181–7196
Sypeck D J, Wadley H N G. Cellular Metals and Metal Foaming Technology. Bremen: MIT-Verlag, 2001
Sypeck D J, Wadley H N G. Cellular metal truss core sandwich structures. Adv Eng Mater, 2002, 4(10): 759–764
Chiras S, Mumm D R, Evans A G, et al. The structural performance of near-optimized truss core panels. Int J Solid Struct, 2002, 39(15): 4093–4115
Sugimura Y. Mechanical response of single-layer tetrahedral trusses under shear loading. Mech Mater, 2004, 36(8): 715–721
Wicks N, Hutchinson J W. Performance of sandwich plates with truss cores. Mech Mater, 2004, 36(8): 739–751
Wallach J C, Gibson L J. Defect sensitivity of a 3D truss material. Scripta Mater, 2001, 45(6): 639–644
Deshpande V S, Fleck N A, Ashby M F. Effective properties of the octet-truss lattice material. J Mech Phys Solid, 2001, 49(8): 1747–1769
Zhou J, Shrotriya P, Soboyejo W O. On the deformation of aluminum lattice block structures: From struts to structures. Mech Mater, 2004, 36(8): 723–737
Hyun S, Torquato S. Optimal and manufacturable two-dimensional Kagome-like cellular solids. J Mater Res, 2002, 17(1): 137–144
Lee Y H, Lee B K, Jeon I, et al. Wire-woven bulk Kagome truss cores. Acta Mater, 2007, 55(18): 6084–6094
Sypeck D J, Wadley H N G. Multifunctional microtruss laminates: Textile synthesis and properties. J Mater Res, 2001, 16(3): 890–897
Zok F W, Rathbun H J, Wei Z, et al. Design of metallic textile core sandwich panels. Int J Solid Struct, 2003, 40(21): 5707–5722
Chiras S, Mumm D R, Evans A G, et al. The structural performance of near-optimized truss core panels. Int J Solid Struct, 2002, 39(15): 4093–4115
Zupan M, Deshpande V S, Fleck N A. The out-of-plane compressive behavior of woven-core sandwich plates. Euro J Mech A/Solids, 2004, 23(2): 411–421
Hill R. Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids, 1963, 11: 357–372
Hill R. Theory of mechanical properties of fibre-strengthened materials. J Mech Phys Solids, 1964, 12: 199–212
Hill R. Theory of mechanical properties of fibre-strengthened materials. J Mech Phys Solids, 1964, 12: 213–218
Hohe J, Becker W. Effective elastic properties of triangular grid structures. Comp Struc, 1999, 45(2): 131–145
Hohe J, Beschorner C, Becker W. Effective elastic properties of hexagonal and quadrilateral grid structures. Comp Struc, 1999, 46(1): 73–89
Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams. J Mech Phys Solids, 2000, 48(6–7): 1253–1283
Noor A K, Burton W S, Bert C W. Computational models for sandwich panels and shells. Appl Mech Rev, 1996, 4(3): 155–199
Straalen I J V. Comprehensive overview of theories for sandwich panels. Workshop on Modeling of Sandwich Structures and Adhesive Bonded Joints. http://www.dogma.org.uk/vtt, 2000
Mohr D. Mechanism-based multi-surface plasticity model for ideal truss lattice materials. Int J Solids Strut, 2005, 42(11–12): 3235–3260
Rabczuk T, Kim J Y, Samaniego E, et al. Homogenization of sandwich structures. Int J Numer Meth Eng, 2004, 61(7): 1009–1027
Hohe J, Becker W. Effective stress-strain relations for two-dimensional cellular sandwich cores: Homogenization, material models, and properties. Appl Mech Rev, 2002, 55: 61–87
Cheng Q H, Lee H P, Lu C. A numerical analysis approach for evaluating elastic constants of sandwich structures with various cores. Comp Struc, 2006, 74(2): 226–236
Mohr D. Mechanism-based multi-surface plasticity model for ideal truss lattice materials. Int J Solids Struc, 2005, 42(11–12): 3235–3260
Ziegler E, Accorsi M, Bennett M. Continuum plate model for lattice block. Mech Mater, 2004, 36(8): 753–766
Liu T, Deng Z C, Lu T J. Minimum weights of pressurized hollow sandwich cylinders with ultralight cellular cores. Int J Solids Strut, 2007, 44(10): 3231–3266
Hyun S, Karlsson A M, Torquato S, et al. Simulated properties of Kagome and tetragonal truss core panel. Int J Solids Struc, 2003, 40: 6989–6998
Wang J, Evans A G, Dharmasena K, et al. On the performance of truss panels with Kagome cores. Int J Solids Struc, 2003, 40: 6981–6988
Lim J H, Kang K J, Lim J H, et al. Mechanical behavior of sandwich panels with tetrahedral and Kagome truss cores fabricated from wires. Int J Solids Struc, 2006, 43(17): 5228–5246
Lai W M, Rubin D, Krempl E. Introduction to Continuum Mechanics. 3 ed. Pergamon: Elsevier Science Publisher, 1993
Kooistra G W, Wadley H N G. Lattice truss structures from expanded metal sheet. Mater Design, 2007, 28(2): 507–514
Deshpande V S, Fleck N A. Collapse of truss core sandwich beams in 3-point bending. Int J Solids Struct, 2001, 38: 6275–6305
Cai H C, Min X, Lin W. Mechanics of Materials. Xi’an: Xi’an Jiaotong University Publisher, 2002, 271–273
Chen C, Lu T J, Fleck N A. Effect of imperfections on the yielding of two-dimensional foams. J Mech Phys Solids, 1999, 47: 2235–2272
Li B C, Zhang Q C, Lu T J. Dynamic performance of truss core sandwich structures based on modal analysis experiments (in Chinese). Acta Mechanica Solida Sinica, 2008, 29(4): 373–378