Ultrahigh plastic flow in Au nanotubes enabled by surface stress facilitated reconstruction
Tài liệu tham khảo
Greer, 2009, The in-situ mechanical testing of nanoscale single-crystalline nanopillars, JOM, 61, 19, 10.1007/s11837-009-0174-8
Wang, 2013, Near-ideal theoretical strength in gold nanowires containing angstrom scale twins, Nat. Commun., 4, 1742, 10.1038/ncomms2768
Richter, 2009, Ultrahigh strength single crystalline nano whiskers grown by physical vapor deposition, Nano Lett., 9, 3048, 10.1021/nl9015107
Wu, 2006, Microstructure-hardened silver nanowires, Nano Lett., 6, 468, 10.1021/nl052427f
Wu, 2005, Mechanical properties of ultrahigh-strength gold nanowires, Nat. Mater., 4, 525, 10.1038/nmat1403
Gall, 2004, The strength of gold nanowires, Nano Lett., 4, 2431, 10.1021/nl048456s
Jennings, 2011, Tensile deformation of electroplated copper nanopillars, Philos. Mag., 91, 1108, 10.1080/14786435.2010.505180
Zhu, 2009, Mechanics of ultra-strength materials, MRS Bull., 34, 167, 10.1557/mrs2009.47
Liang, 2004, Response of copper nanowires in dynamic tensile deformation, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 218, 599, 10.1243/095440604774202231
Tavazza, 2009, Elongation and breaking mechanisms of gold nanowires under a wide range of tensile conditions, J. Appl. Phys., 106, 043522, 10.1063/1.3200957
Deng, 2009, Near-ideal strength in gold nanowires achieved through microstructural design, ACS Nano., 3, 3001, 10.1021/nn900668p
Lowry, 2010, Achieving the ideal strength in annealed molybdenum nanopillars, Acta Mater., 58, 5160, 10.1016/j.actamat.2010.05.052
Hao, 2013, A transforming metal nanocomposite with large elastic strain, low modulus, and high strength, Science, 339, 1191, 10.1126/science.1228602
Yue, 2013, Crystalline liquid and rubber-like behavior in Cu nanowires, Nano Lett., 13, 3812, 10.1021/nl401829e
Yue, 2011, Approaching the theoretical elastic strain limit in copper nanowires, Nano Lett., 11, 3151, 10.1021/nl201233u
Peng, 2008, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Nat. Nanotechnol., 3, 626, 10.1038/nnano.2008.211
Yu, 2000, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637, 10.1126/science.287.5453.637
Sun, 2003, Metal nanostructures with hollow interiors, Adv. Mater., 15, 641, 10.1002/adma.200301639
Cao, 2006, Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays, ChemPhysChem, 7, 1500, 10.1002/cphc.200500690
Wirtz, 2002, Template-synthesized nanotubes for chemical separations and analysis, Chem. Eur. J., 8, 3572, 10.1002/1521-3765(20020816)8:16<3572::AID-CHEM3572>3.0.CO;2-9
Mu, 2004, Uniform metal nanotube arrays by multistep template replication and electrodeposition, Adv. Mater., 16, 1550, 10.1002/adma.200400129
Zhu, 2013, Fabrication of Au nanotube arrays and their plasmonic properties, Nanoscale, 5, 3742, 10.1039/c3nr33658a
Wang, 2006, Standing [111] gold nanotube to nanorod arrays via template growth, Nanotechnology, 17, 2689, 10.1088/0957-4484/17/10/041
Sun, 2002, Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors, Nano Lett., 2, 481, 10.1021/nl025531v
Oshima, 2003, Helical gold nanotube synthesized at 150K, Phys. Rev. Lett., 91, 205503, 10.1103/PhysRevLett.91.205503
Davenport, 2011, Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes, Nanotechnology, 22, 155301, 10.1088/0957-4484/22/15/155301
Lagos, 2009, Observation of the smallest metal nanotube with a square cross-section, Nat. Nanotechnol., 4, 149, 10.1038/nnano.2008.414
Autreto, 2011, Intrinsic stability of the smallest possible silver nanotube, Phys. Rev. Lett., 106, 065501, 10.1103/PhysRevLett.106.065501
Sun, 2005, Shape-controlled synthesis of silver nanostructures, Nanotechnology, 16, 2412, 10.1088/0957-4484/16/10/070
Venkata Kamalakar, 2008, A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field, Adv. Mater., 20, 149, 10.1002/adma.200700430
Mohanty, 2006, Synthesis of single crystalline tellurium nanotubes with triangular and hexagonal cross sections, J. Phys. Chem. B, 110, 791, 10.1021/jp0551364
Guo, 2012, Sintering dynamics and thermal stability of novel configurations of Ag clusters, J. Phys. Chem. Solids
Kang, 2003, Atomistic study of double-wall copper nanotubes, J. Korean Phys. Soc., 42, S708
Su, 2014, Investigation into the formation of 13–6 helical multi-shell gold nanowires, Comput. Mater. Sci., 82, 226, 10.1016/j.commatsci.2013.09.063
Wang, 2009, Molecular dynamics study of the mechanics for Ni single-wall nanowires, Eur. J. Mech. A Solids, 28, 877, 10.1016/j.euromechsol.2009.01.002
Su, 2013, Molecular dynamics simulation on mechanical properties of gold nanotubes, Acta Phys. Sin., 6, 018
Das, 2013, Work function and Young’s modulus of platinum nanotubes: density functional study, Phys. Status Solidi B, Basic Solid State Phys., 250, 1519, 10.1002/pssb.201248594
Amorim, 2008, Computer simulations of copper and gold nanowires and single-wall nanowires, J. Phys. Chem. C, 112, 15241, 10.1021/jp804345n
Zhang, 2012, Small-scale effect on the mechanical properties of metallic nanotubes, Appl. Phys. Lett., 101, 093109, 10.1063/1.4748975
Ji, 2006, Geometric effects on the inelastic deformation of metal nanowires, Appl. Phys. Lett., 89, 181916, 10.1063/1.2372748
Ji, 2007, Characterizing the elasticity of hollow metal nanowires, Nanotechnology, 18, 115707, 10.1088/0957-4484/18/11/115707
Sun, 2013, Near-ideal strength in metal nanotubes revealed by atomistic simulations, Appl. Phys. Lett., 103, 231911, 10.1063/1.4841995
Diao, 2003, Surface-stress-induced phase transformation in metal nanowires, Nat. Mater., 2, 656, 10.1038/nmat977
Park, 2005, Shape memory and pseudoelasticity in metal nanowires, Phys. Rev. Lett., 95, 255504, 10.1103/PhysRevLett.95.255504
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039
Grochola, 2005, On fitting a gold embedded atom method potential using the force matching method, J. Chem. Phys., 123, 204719, 10.1063/1.2124667
Deng, 2009, Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni, Acta Mater., 57, 6090, 10.1016/j.actamat.2009.08.035
Deng, 2009, Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires, Nano Lett., 9, 1517, 10.1021/nl803553b
Li, 2003, AtomEye: an efficient atomistic configuration viewer, Model. Simul. Mater. Sci. Eng., 11, 173, 10.1088/0965-0393/11/2/305
Seo, 2011, Superplastic deformation of defect-free Au nanowires via coherent twin propagation, Nano Lett., 11, 3499, 10.1021/nl2022306
Seo, 2013, Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires, Nano Lett., 13, 5112, 10.1021/nl402282n
Wang, 2001, Novel structures and properties of gold nanowires, Phys. Rev. Lett., 86, 2046, 10.1103/PhysRevLett.86.2046
Gianola, 2009, Micro- and nanoscale tensile testing of materials, JOM, 61, 24, 10.1007/s11837-009-0037-3
Zhu, 2005, An electromechanical material testing system for in situ electron microscopy and applications, Proc. Natl. Acad. Sci. U.S.A., 102, 14503, 10.1073/pnas.0506544102