Ultrahigh plastic flow in Au nanotubes enabled by surface stress facilitated reconstruction

Acta Materialia - Tập 86 - Trang 15-22 - 2015
R. Cao1, Y. Deng2, C. Deng3
1Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433, China
2Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
3Department of Mechanical Engineering, The University of Manitoba, 15 Gillson Street, Winnipeg MB R3T 5V6, Canada

Tài liệu tham khảo

Greer, 2009, The in-situ mechanical testing of nanoscale single-crystalline nanopillars, JOM, 61, 19, 10.1007/s11837-009-0174-8 Wang, 2013, Near-ideal theoretical strength in gold nanowires containing angstrom scale twins, Nat. Commun., 4, 1742, 10.1038/ncomms2768 Richter, 2009, Ultrahigh strength single crystalline nano whiskers grown by physical vapor deposition, Nano Lett., 9, 3048, 10.1021/nl9015107 Wu, 2006, Microstructure-hardened silver nanowires, Nano Lett., 6, 468, 10.1021/nl052427f Wu, 2005, Mechanical properties of ultrahigh-strength gold nanowires, Nat. Mater., 4, 525, 10.1038/nmat1403 Gall, 2004, The strength of gold nanowires, Nano Lett., 4, 2431, 10.1021/nl048456s Jennings, 2011, Tensile deformation of electroplated copper nanopillars, Philos. Mag., 91, 1108, 10.1080/14786435.2010.505180 Zhu, 2009, Mechanics of ultra-strength materials, MRS Bull., 34, 167, 10.1557/mrs2009.47 Liang, 2004, Response of copper nanowires in dynamic tensile deformation, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 218, 599, 10.1243/095440604774202231 Tavazza, 2009, Elongation and breaking mechanisms of gold nanowires under a wide range of tensile conditions, J. Appl. Phys., 106, 043522, 10.1063/1.3200957 Deng, 2009, Near-ideal strength in gold nanowires achieved through microstructural design, ACS Nano., 3, 3001, 10.1021/nn900668p Lowry, 2010, Achieving the ideal strength in annealed molybdenum nanopillars, Acta Mater., 58, 5160, 10.1016/j.actamat.2010.05.052 Hao, 2013, A transforming metal nanocomposite with large elastic strain, low modulus, and high strength, Science, 339, 1191, 10.1126/science.1228602 Yue, 2013, Crystalline liquid and rubber-like behavior in Cu nanowires, Nano Lett., 13, 3812, 10.1021/nl401829e Yue, 2011, Approaching the theoretical elastic strain limit in copper nanowires, Nano Lett., 11, 3151, 10.1021/nl201233u Peng, 2008, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Nat. Nanotechnol., 3, 626, 10.1038/nnano.2008.211 Yu, 2000, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637, 10.1126/science.287.5453.637 Sun, 2003, Metal nanostructures with hollow interiors, Adv. Mater., 15, 641, 10.1002/adma.200301639 Cao, 2006, Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays, ChemPhysChem, 7, 1500, 10.1002/cphc.200500690 Wirtz, 2002, Template-synthesized nanotubes for chemical separations and analysis, Chem. Eur. J., 8, 3572, 10.1002/1521-3765(20020816)8:16<3572::AID-CHEM3572>3.0.CO;2-9 Mu, 2004, Uniform metal nanotube arrays by multistep template replication and electrodeposition, Adv. Mater., 16, 1550, 10.1002/adma.200400129 Zhu, 2013, Fabrication of Au nanotube arrays and their plasmonic properties, Nanoscale, 5, 3742, 10.1039/c3nr33658a Wang, 2006, Standing [111] gold nanotube to nanorod arrays via template growth, Nanotechnology, 17, 2689, 10.1088/0957-4484/17/10/041 Sun, 2002, Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors, Nano Lett., 2, 481, 10.1021/nl025531v Oshima, 2003, Helical gold nanotube synthesized at 150K, Phys. Rev. Lett., 91, 205503, 10.1103/PhysRevLett.91.205503 Davenport, 2011, Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes, Nanotechnology, 22, 155301, 10.1088/0957-4484/22/15/155301 Lagos, 2009, Observation of the smallest metal nanotube with a square cross-section, Nat. Nanotechnol., 4, 149, 10.1038/nnano.2008.414 Autreto, 2011, Intrinsic stability of the smallest possible silver nanotube, Phys. Rev. Lett., 106, 065501, 10.1103/PhysRevLett.106.065501 Sun, 2005, Shape-controlled synthesis of silver nanostructures, Nanotechnology, 16, 2412, 10.1088/0957-4484/16/10/070 Venkata Kamalakar, 2008, A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field, Adv. Mater., 20, 149, 10.1002/adma.200700430 Mohanty, 2006, Synthesis of single crystalline tellurium nanotubes with triangular and hexagonal cross sections, J. Phys. Chem. B, 110, 791, 10.1021/jp0551364 Guo, 2012, Sintering dynamics and thermal stability of novel configurations of Ag clusters, J. Phys. Chem. Solids Kang, 2003, Atomistic study of double-wall copper nanotubes, J. Korean Phys. Soc., 42, S708 Su, 2014, Investigation into the formation of 13–6 helical multi-shell gold nanowires, Comput. Mater. Sci., 82, 226, 10.1016/j.commatsci.2013.09.063 Wang, 2009, Molecular dynamics study of the mechanics for Ni single-wall nanowires, Eur. J. Mech. A Solids, 28, 877, 10.1016/j.euromechsol.2009.01.002 Su, 2013, Molecular dynamics simulation on mechanical properties of gold nanotubes, Acta Phys. Sin., 6, 018 Das, 2013, Work function and Young’s modulus of platinum nanotubes: density functional study, Phys. Status Solidi B, Basic Solid State Phys., 250, 1519, 10.1002/pssb.201248594 Amorim, 2008, Computer simulations of copper and gold nanowires and single-wall nanowires, J. Phys. Chem. C, 112, 15241, 10.1021/jp804345n Zhang, 2012, Small-scale effect on the mechanical properties of metallic nanotubes, Appl. Phys. Lett., 101, 093109, 10.1063/1.4748975 Ji, 2006, Geometric effects on the inelastic deformation of metal nanowires, Appl. Phys. Lett., 89, 181916, 10.1063/1.2372748 Ji, 2007, Characterizing the elasticity of hollow metal nanowires, Nanotechnology, 18, 115707, 10.1088/0957-4484/18/11/115707 Sun, 2013, Near-ideal strength in metal nanotubes revealed by atomistic simulations, Appl. Phys. Lett., 103, 231911, 10.1063/1.4841995 Diao, 2003, Surface-stress-induced phase transformation in metal nanowires, Nat. Mater., 2, 656, 10.1038/nmat977 Park, 2005, Shape memory and pseudoelasticity in metal nanowires, Phys. Rev. Lett., 95, 255504, 10.1103/PhysRevLett.95.255504 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Grochola, 2005, On fitting a gold embedded atom method potential using the force matching method, J. Chem. Phys., 123, 204719, 10.1063/1.2124667 Deng, 2009, Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni, Acta Mater., 57, 6090, 10.1016/j.actamat.2009.08.035 Deng, 2009, Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires, Nano Lett., 9, 1517, 10.1021/nl803553b Li, 2003, AtomEye: an efficient atomistic configuration viewer, Model. Simul. Mater. Sci. Eng., 11, 173, 10.1088/0965-0393/11/2/305 Seo, 2011, Superplastic deformation of defect-free Au nanowires via coherent twin propagation, Nano Lett., 11, 3499, 10.1021/nl2022306 Seo, 2013, Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires, Nano Lett., 13, 5112, 10.1021/nl402282n Wang, 2001, Novel structures and properties of gold nanowires, Phys. Rev. Lett., 86, 2046, 10.1103/PhysRevLett.86.2046 Gianola, 2009, Micro- and nanoscale tensile testing of materials, JOM, 61, 24, 10.1007/s11837-009-0037-3 Zhu, 2005, An electromechanical material testing system for in situ electron microscopy and applications, Proc. Natl. Acad. Sci. U.S.A., 102, 14503, 10.1073/pnas.0506544102