Ultrafast nano generation of acoustic waves in water via a single carbon nanotube

Photoacoustics - Tập 28 - Trang 100407 - 2022
Michele Diego1, Marco Gandolfi2,3,4, Alessandro Casto1,5, Francesco Maria Bellussi5, Fabien Vialla1, Aurélien Crut1, Stefano Roddaro6,7, Matteo Fasano5, Fabrice Vallée1, Natalia Del Fatti1,8, Paolo Maioli1, Francesco Banfi1
1FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
2CNR-INO, via Branze 45, Brescia, 25123, Italy
3Department of Information Engineering, Università di Brescia, via Branze 38, Brescia, 25123, Italy
4Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, via della Garzetta 48, Brescia, I-25133, Italy
5Politecnico di Torino, Department of Energy, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
6Dipartimento di Fisica ”E. Fermi”, Università di Pisa, Largo B Pontecorvo 3, Pisa, I-56127, Italy
7NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, piazza San Silvestro 12, Pisa, I-56127, Italy
8Institut Universitaire de France (IUF), France

Tài liệu tham khảo

Moore, 2019, Strategies for image-guided therapy, surgery, and drug delivery using photoacoustic imaging, Theranostics, 9, 1550, 10.7150/thno.32362 Lee, 2018, Efficient photoacoustic conversion in optical nanomaterials and composites, Adv. Opt. Mater., 6, 10.1002/adom.201800491 Mallidi, 2009, Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer, Nano Lett., 9, 2825, 10.1021/nl802929u Li, 2015, Gold nanoparticles for photoacoustic imaging, Nanomedicine, 10, 299, 10.2217/nnm.14.169 Chen, 2021, Gold nanoparticles to enhance ophthalmic imaging, Biomater. Sci., 9, 367, 10.1039/D0BM01063D Mante, 2014, Probing hydrophilic interface of solid/liquid-water by nanoultrasonics, Sci. Rep., 4 Chakraborty, 2017, When can the elastic properties of simple liquids be probed using high-frequency nanoparticle vibrations?, J. Phys. Chem. C, 122, 13347, 10.1021/acs.jpcc.7b09951 Sun, 2020, Observation of femtosecond acoustic anomaly in a solid liquid interface, J. Phys. Chem. C, 124, 2987, 10.1021/acs.jpcc.9b09359 Yu, 2021, Nanoparticle–fluid interactions at ultrahigh acoustic vibration frequencies studied by femtosecond time-resolved microscopy, ACS Nano, 15, 1833, 10.1021/acsnano.0c09840 Ishikawa, 2021, Interaction of acoustic and quasi-elastic modes in liquid water on nanometer length scales, J. Phys. Soc. Japan, 90, 10.7566/JPSJ.90.083602 Zakhvataev, 2021, On the existence of soliton-like collective modes in liquid water at the viscoelastic crossover, Sci. Rep., 11, 1 Fasano, 2019, Thermally triggered nanorocket from double-walled carbon nanotube in water, Mol. Simul., 45, 417, 10.1080/08927022.2018.1535180 Sun, 2018, Femtosecond acoustics and terahertz ultrasonics, 00005 Sette, 1995, Collective dynamics in water by high energy resolution inelastic x-ray scattering, Phys. Rev. Lett., 75, 850, 10.1103/PhysRevLett.75.850 Ruocco, 1999, The high-frequency dynamics of liquid water, J. Phys.: Condens. Matter, 11, R259 Bencivenga, 2007, High-frequency dynamics of liquid and supercritical water, Phys. Rev. E, 75, 10.1103/PhysRevE.75.051202 Ruocco, 2008, The history of the “fast sound” in liquid water, Condens. Matter Phys., 11, 29, 10.5488/CMP.11.1.29 Bencivenga, 2009, Temperature and density dependence of the structural relaxation time in water by inelastic ultraviolet scattering, J. Chem. Phys., 131, 10.1063/1.3243314 Guiraud, 2021, Thermoacoustic wave generation in multilayered thermophones with cylindrical and spherical geometries, J. Appl. Phys., 129, 10.1063/5.0039458 Guiraud, 2019, Multilayer modeling of thermoacoustic sound generation for thermophone analysis and design, J. Sound Vib., 455, 275, 10.1016/j.jsv.2019.05.001 Gandolfi, 2020, Optical wavelength dependence of photoacoustic signal of gold nanofluid, Photoacoustics, 20, 10.1016/j.pacs.2020.100199 Prost, 2015, Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime, Phys. Rev. B, 92, 10.1103/PhysRevB.92.115450 Hatef, 2015, Analysis of photoacoustic response from gold–silver alloy nanoparticles irradiated by short pulsed laser in water, J. Phys. Chem. C, 119, 24075, 10.1021/acs.jpcc.5b08359 Kumar, 2018, Simulation studies of photoacoustic response from gold-silica core-shell nanoparticles, Plasmonics, 13, 1833, 10.1007/s11468-018-0697-3 Chen, 2012, Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles, Small, 8, 47, 10.1002/smll.201101140 Shahbazi, 2019, Photoacoustics of core–shell nanospheres using comprehensive modeling and analytical solution approach, Commun. Phys., 2 Shi, 2017, Quantifying the plasmonic nanoparticle size effect on photoacoustic conversion efficiency, J. Phys. Chem. C, 121, 5805, 10.1021/acs.jpcc.6b12498 Pang, 2019, Theoretical and experimental study of photoacoustic excitation of silica-coated gold nanospheres in water, J. Phys. Chem. C, 124, 1088, 10.1021/acs.jpcc.9b09040 Pramanik, 2009, Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent, J. Biomed. Opt., 14, 10.1117/1.3147407 Baac, 2012, Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy, Sci. Rep., 2 Golubewa, 2020, Single-walled carbon nanotubes as a photo-thermo-acoustic cancer theranostic agent: theory and proof of the concept experiment, Sci. Rep., 10 Caddeo, 2017, Thermal boundary resistance from transient nanocalorimetry: a multiscale modeling approach, Phys. Rev. B, 95, 10.1103/PhysRevB.95.085306 Banfi, 2010, Ab initio thermodynamics calculation of all-optical time-resolved calorimetry of nanosize systems: Evidence of nanosecond decoupling of electron and phonon temperatures, Phys. Rev. B, 81, 10.1103/PhysRevB.81.155426 Rizzi, 2021, Analytical model of the acoustic response of nanogranular films adhering to a substrate, Phys. Rev. B, 104, 10.1103/PhysRevB.104.035416 Benetti, 2017, Bottom-up mechanical nanometrology of granular Ag nanoparticles thin films, J. Phys. Chem. C, 121, 22434, 10.1021/acs.jpcc.7b05795 Ronchi, 2021, Discrimination of nano-objects via cluster analysis techniques applied to time-resolved thermo-acoustic microscopy, Ultrasonics, 114, 10.1016/j.ultras.2021.106403 Mohammad Nejad, 2019, Heat transfer at the interface of graphene nanoribbons with different relative orientations and gaps, Energies, 12, 796, 10.3390/en12050796 Tascini, 2017, Thermal transport across nanoparticle–fluid interfaces: The interplay of interfacial curvature and nanoparticle–fluid interactions, Phys. Chem. Chem. Phys., 19, 3244, 10.1039/C6CP06403E Tu, 2002, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number, Phys. Rev. B, 65, 10.1103/PhysRevB.65.233407 Lu, 1997, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett., 79, 1297, 10.1103/PhysRevLett.79.1297 Blancon, 2013, Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes, Nature Commun., 4 Vialla, 2014, Universal nonresonant absorption in carbon nanotubes, Phys. Rev. B, 90, 10.1103/PhysRevB.90.155401 Che, 2000, Thermal conductivity of carbon nanotubes, Nanotechnology, 11, 65, 10.1088/0957-4484/11/2/305 Hone, 2002, Thermal properties of carbon nanotubes and nanotube-based materials, Appl. Phys. A, 74, 339, 10.1007/s003390201277 Pradhan, 2009, The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes, Nanotechnology, 20, 10.1088/0957-4484/20/24/245705 Auld, 1973 Velasco, 2009, Vibrations in cylindrical shells with transverse elastic isotropy: Application to III–V nitride nanotubes, Surf. Sci., 603, 2950, 10.1016/j.susc.2009.07.046 Zaeri, 2015, On the elastic constants of single walled carbon nanotubes, Procedia Mater. Sci., 11, 666, 10.1016/j.mspro.2015.11.021 Maultzsch, 2005, Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment, Phys. Rev. B, 72, 10.1103/PhysRevB.72.205438 Palaci, 2005, Radial elasticity of multiwalled carbon nanotubes, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.175502 Li, 2005, Axial and radial thermal expansions of single-walled carbon nanotubes, Phys. Rev. B, 71, 10.1103/PhysRevB.71.235414 Bandow, 1997, Radial thermal expansion of purified multiwall carbon nanotubes measured by X-ray diffraction, Japan. J. Appl. Phys., 36, L1403, 10.1143/JJAP.36.L1403 Maniwa, 2001, Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x-ray diffraction study, Phys. Rev. B, 64, 10.1103/PhysRevB.64.073105 Marsden, 2018, Modelling the coefficient of thermal expansion in graphite crystals: implications of lattice strain due to irradiation and pressure, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 474 Chen, 2022, Interfacial thermal resistance: Past, present, and future, Rev. Modern Phys., 94, 10.1103/RevModPhys.94.025002 Merabia, 2009, Heat transfer from nanoparticles: A corresponding state analysis, Proc. Natl. Acad. Sci., 106, 15113, 10.1073/pnas.0901372106 Ge, 2004, AuPd metal nanoparticles as probes of nanoscale thermal transport in aqueous solution, J. Phys. Chem. B, 108, 18870, 10.1021/jp048375k Calasso, 2001, Photoacoustic point source, Phys. Rev. Lett., 86, 3550, 10.1103/PhysRevLett.86.3550 Gandolfi, 2022, Ultrafast photoacoustic nanometrology of InAs nanowires mechanical properties, J. Phys. Chem. C, 126, 6361, 10.1021/acs.jpcc.2c01060 Vialla, 2020, Time-domain investigations of coherent phonons in van der waals thin films, Nanomaterials, 10, 2543, 10.3390/nano10122543 Yu, 2022, Energy dissipation for nanometer sized acoustic oscillators, J. Phys. Chem. C, 126, 3811, 10.1021/acs.jpcc.1c10073 Kuriakose, 2017, Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H 2 O ice to 82 GPa, Phys. Rev. B, 96, 10.1103/PhysRevB.96.134122 Sathyan, 2020, Three-dimensional imaging of crystalline structure in water ice at high pressure by time-domain brillouin scattering, 1901 Sandeep, 2021, 3D characterization of individual grains of coexisting high-pressure H2O ice phases by time-domain brillouin scattering, J. Appl. Phys., 130, 10.1063/5.0056814 Thompson, 2022, LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Comm., 271, 10.1016/j.cpc.2021.108171 Jewett, 2021, Moltemplate: A tool for coarse-grained modeling of complex biological matter and soft condensed matter physics, J. Mol. Biol., 10.1016/j.jmb.2021.166841 Humphrey, 1996, VMD – visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5 Hockney, 1988 Tersoff, 1988, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37, 6991, 10.1103/PhysRevB.37.6991 Bellussi, 2021, Anisotropic electrostatic interactions in coarse-grained water models to enhance the accuracy and speed-up factor of mesoscopic simulations, J. Phys. Chem. B, 125, 12020, 10.1021/acs.jpcb.1c07642 Berendsen, 1987, The missing term in effective pair potentials, J. Phys. Chem., 91, 6269, 10.1021/j100308a038 Ryckaert, 1977, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys., 23, 327, 10.1016/0021-9991(77)90098-5 Werder, 2003, On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes, J. Phys. Chem. B, 107, 1345, 10.1021/jp0268112 Alosious, 2020, Kapitza resistance at water–graphene interfaces, J. Chem. Phys., 152, 10.1063/5.0009001 Alexeev, 2015, Kapitza resistance between few-layer graphene and water: liquid layering effects, Nano Lett., 15, 5744, 10.1021/acs.nanolett.5b03024 Maniwa, 2005, Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes, Chem. Phys. Lett., 401, 534, 10.1016/j.cplett.2004.11.112 Kolesnikov, 2004, Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement, Phys. Rev. Lett., 93, 035503, 10.1103/PhysRevLett.93.035503 Mase, 2009 Lawler, 2005, Radial-breathing mode frequencies for single-walled carbon nanotubes of arbitrary chirality: First-principles calculations, Phys. Rev. B, 72, 233403, 10.1103/PhysRevB.72.233403