Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni–P coated tetrapod-shaped ZnO nano- and microstructures

Physical Chemistry Chemical Physics - Tập 17 Số 35 - Trang 22923-22933
Mohd Najim1,2,3,4,5, Gaurav Modi3,6,7,4,5, Yogendra Kumar Mishra8,7,9,10, Rainer Adelung8,7,9,10, Dharmendra Singh11,12,2,4,5, Vijaya Agarwala11,12,3,4,5
1Department of Electronics and Communication Engineering
2Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
3Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
4India
5Roorkee
6Functional Nanomaterials
7Functional Nanomaterials, Institute for Materials Science, Christian-Albrechts University Kiel, Kaiserstr. 2, Kiel, Germany
8Christian-Albrechts University Kiel
9Germany
10Institute for Materials Science
11Centre of Excellence: Nanotechnology
12Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

Tóm tắt

Tetrapod-shaped ZnO structures were synthesized by a simple FTS approach and have been coated with Ni–P using the electroless deposition process. Ni–P coated T-ZnO exhibits an ultra-wide bandwidth of 10.0 GHz (4.0–14.0 GHz) at RL < −10 dB for the coating thickness of 3.4 mm.

Từ khóa


Tài liệu tham khảo

Chen, 2012, Adv. Mater., 24, OP281

Xia, 2013, Adv. Mater., 25, 6905, 10.1002/adma.201303088

Che, 2004, Adv. Mater., 16, 401, 10.1002/adma.200306460

Liu, 2007, J. Phys. Chem. C, 111, 13696, 10.1021/jp0731396

Liu, 2008, Appl. Phys. Lett., 93, 013110, 10.1063/1.2957035

Liu, 2012, J. Mater. Chem., 22, 21183, 10.1039/c2jm34590k

Najim, 2015, J. Mater. Sci.: Mater. Electron., 10.1007/s10854-10015-13366-10858

Panwar, 2015, IEEE Trans. Magn., 10.1109/TMAG.2015.2454431

Ohlan, 2010, ACS Appl. Mater. Interfaces, 2, 927, 10.1021/am900893d

Xia, 2011, Nanoscale, 3, 3860, 10.1039/c1nr10606f

Najim, 2014, Adv. Sci. Lett., 20, 1490, 10.1166/asl.2014.5549

Panwar, 2015, IEEE Trans. Microwave Theory Tech., 63, 2438, 10.1109/TMTT.2015.2446989

Liu, 2012, Small, 8, 1214, 10.1002/smll.201102245

Liu, 2012, Compos. Sci. Technol., 72, 1632, 10.1016/j.compscitech.2012.06.022

Fu, 2013, J. Mater. Chem. A, 1, 5577, 10.1039/c3ta10402h

Hu, 2013, Phys. Chem. Chem. Phys., 15, 13038, 10.1039/c3cp51253c

Wang, 2015, Phys. Chem. Chem. Phys., 17, 5878, 10.1039/C4CP05556J

Wang, 2014, Carbon, 74, 312, 10.1016/j.carbon.2014.03.037

Watts, 2012, Adv. Mater., 24, OP98

Mattiucci, 2013, Sci. Rep., 3, 3203, 10.1038/srep03203

Wen, 2014, Phys. Chem. Chem. Phys., 16, 18333, 10.1039/C4CP01468E

A. Hoz and A.Loupy, Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, 3rd edn, 2012

Wang, 2015, Phys. Chem. Chem. Phys., 17, 2113, 10.1039/C4CP03909B

Snoek, 1948, Physica, 14, 207, 10.1016/0031-8914(48)90038-X

Snoek, 1947, Nature, 160, 90, 10.1038/160090a0

Yan, 2009, J. Alloys Compd., 487, 708, 10.1016/j.jallcom.2009.08.051

Gu, 2011, Chem. Commun., 47, 5337, 10.1039/c0cc05800a

Hekmatara, 2014, Phys. Chem. Chem. Phys., 16, 24069, 10.1039/C4CP03208J

Wu, 2005, J. Magn. Magn. Mater., 285, 233, 10.1016/j.jmmm.2004.07.045

Zhang, 2006, Appl. Phys. Lett., 89, 3115

Liu, 2008, Appl. Phys. Lett., 92, 173117, 10.1063/1.2919098

Wang, 2015, J. Mater. Chem. A, 3, 2734, 10.1039/C4TA06053A

Mishra, 2013, Part. Part. Syst. Charact., 30, 775, 10.1002/ppsc.201300197

Zhao, 2015, Phys. Chem. Chem. Phys., 17, 2531, 10.1039/C4CP05031B

Zhao, 2015, Phys. Chem. Chem. Phys., 17, 8802, 10.1039/C4CP05632A

Zhuo, 2008, J. Phys. Chem. C, 112, 11767, 10.1021/jp804090q

Fang, 2010, J. Appl. Phys., 107, 054304, 10.1063/1.3295912

Kong, 2013, J. Phys. Chem. C, 117, 2135, 10.1021/jp309984p

Jin, 2013, Adv. Mater., 25, 1342, 10.1002/adma.201203849

Gedamu, 2014, Adv. Mater., 26, 1541, 10.1002/adma.201304363

Jin, 2012, Adv. Mater., 24, 5676, 10.1002/adma.201201780

Papavlassopoulos, 2014, PLoS One, 9, e84983, 10.1371/journal.pone.0084983

Mishra, 2011, Antiviral Res., 92, 305, 10.1016/j.antiviral.2011.08.017

Antoine, 2012, Antiviral Res., 96, 363, 10.1016/j.antiviral.2012.09.020

Jin, 2014, PLoS One, 9, e106991, 10.1371/journal.pone.0106991

Modi, 2015, Adv. Nat. Sci.: Nanosci. Nanotechnol., 6, 033002

Jian, 2015, Phys. Chem. Chem. Phys., 17, 3024, 10.1039/C4CP04849K

Zhang, 2015, RSC Adv., 5, 10197, 10.1039/C4RA12591F

Agarwala, 2005, Pramana J. Phys., 65, 959, 10.1007/BF02704097

Mishra, 2014, KONA Powder Part. J., 31, 92, 10.14356/kona.2014015

Mishra, 2015, ACS Appl. Mater. Interfaces, 7, 14303, 10.1021/acsami.5b02816

Agarwala, 2003, Sadhana, 28, 475, 10.1007/BF02706445

Sharma, 2002, J. Mater. Sci., 37, 5247, 10.1023/A:1021056503872

Krishnan, 2006, Metall. Mater. Trans. A, 37, 1917, 10.1007/s11661-006-0134-7

Nicolson, 1970, IEEE Trans. Instrum. Meas., 19, 377, 10.1109/TIM.1970.4313932

B. D. Cullity and S. R.Stock, Elements of X-ray Diffraction, Prentice Hall, Upper Saddle River, NJ, 2001

Balaraju, 2006, Mater. Res. Bull., 41, 847, 10.1016/j.materresbull.2005.09.024

Chiou, 2003, Diamond Relat. Mater., 12, 1841, 10.1016/S0925-9635(03)00274-7

Chen, 2012, J. Mater. Chem., 22, 15190, 10.1039/c2jm31171b

Sharma, 2008, Mater. Lett., 62, 2233, 10.1016/j.matlet.2007.11.076

Dong, 2008, Appl. Phys. Lett., 92, 013127, 10.1063/1.2830995

Wang, 2012, Adv. Powder Technol., 23, 861, 10.1016/j.apt.2011.12.003

Lewis, 2005, J. Phys. D: Appl. Phys., 38, 202, 10.1088/0022-3727/38/2/004

Watts, 2003, Chem. Phys. Lett., 378, 609, 10.1016/j.cplett.2003.07.002

Gao, 2008, J. Phys. D: Appl. Phys., 41, 235005, 10.1088/0022-3727/41/23/235005

Zhang, 2010, Appl. Phys. Lett., 96, 223111, 10.1063/1.3446868

Zhou, 2012, J. Magn. Magn. Mater., 324, 1720, 10.1016/j.jmmm.2011.12.028

Kubo, 1962, J. Phys. Soc. Jpn., 17, 975, 10.1143/JPSJ.17.975

Li, 2010, Mater. Sci. Eng., B, 175, 81, 10.1016/j.mseb.2010.07.007

Zhou, 2006, Mater. Sci. Eng., B, 126, 93, 10.1016/j.mseb.2005.09.009

Li, 2010, J. Phys. Chem. C, 114, 10088, 10.1021/jp100341h