Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cảm biến chỉ số khúc xạ sợi quang hình chữ D siêu ổn định với nền được phủ graphene-vàng
Tóm tắt
Trong bài báo này, chúng tôi trình bày một cảm biến chỉ số khúc xạ (RI) có độ nhạy cao với cấu trúc hình chữ D được phủ bằng màng vàng và graphene. Cụ thể, tác động của các tham số cấu trúc lên độ ổn định của cảm biến quang sợi được phân tích. Trong nghiên cứu của chúng tôi, đã phát hiện ra rằng cảm biến mà chúng tôi đề xuất không quá nhạy cảm với sự thay đổi của các tham số cấu trúc trên cơ sở đảm bảo độ chính xác của cảm biến. Ưu điểm này có nghĩa là yêu cầu về sai số gia công được giảm thiểu. Việc điều tra sâu hơn cho thấy cảm biến được đề xuất có độ nhạy kiểm tra bước sóng tối đa là 4391 nm/RIU với khoảng chỉ số khúc xạ động từ 1.33 đến 1.39 và độ nhạy biên độ tối đa là 1139 RIU−1 với chỉ số khúc xạ của mẫu là 1.38 trong vùng nhìn thấy. Độ phân giải tương ứng là 2.28 × 10−5 và 8.78 × 10−6 dựa trên các phương pháp kiểm tra bước sóng và phương pháp dựa trên biên độ (hoặc pha). Những đặc điểm này của các kiến trúc cảm biến nhỏ gọn, dễ chế tạo và có độ nhạy cao mở ra khả năng sử dụng loại cảm biến này trong các ứng dụng sinh học.
Từ khóa
#chỉ số khúc xạ #cảm biến quang #sợi quang #graphene #vàngTài liệu tham khảo
An G, Li S, Yan X, Zhang X, Yuan Z, Zhang Y (2016) High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber. JOSA B 33(7):1330–1334
Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3):031,901
Chen D, Hu G, Chen L (2011) Dual-core photonic crystal fiber for hydrostatic pressure sensing. IEEE Photon Technol Lett 23(24):1851–1853
Gauvreau B, Hassani A, Fehri MF, Kabashin A, Skorobogatiy M (2007) Photonic bandgap fiber-based surface plasmon resonance sensors. Opt Express 15(18):11,413–11,426
Hakomori S, Asai T, Mizuno N (2002) Single-side polishing method for substrate edge, and apparatus therefor. US Patent 6,402,596
Hassani A, Skorobogatiy M (2007) Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J Opt Soc Am B 24(6):1423–1429
Hassani A, Skorobogatiy M (2009) Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. JOSA B 26(8):1550–1557
Huang Y, Zhu W, Li Z, Chen G, Chen L, Zhou J, Lin H, Guan J, Fang W, Liu X et al (2018) High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film. Sensors Actuators B Chem 255:57–69
Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 23(12):2135–2136
Lu Y, Hao CJ, Wu BQ, Huang XH, Wen WQ, Fu XY, Yao J (2012) Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments. Sensors 12(9):12,016–12,025
Mak KF, Sfeir MY, Misewich JA, Heinz TF (2010) The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc Natl Acad Sci 107(34):14,999–15,004
Malitson I (1965) Interspecimen comparison of the refractive index of fused silica. Josa 55(10):1205–1209
May-Arrioja DA, Guzman-Sepulveda JR (2017) Highly sensitive fiber optic refractive index sensor using multicore coupled structures. J Light Technol 35(13):2695–2701
Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19(4):3799–3808
Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308
Otupiri R, Akowuah EK, Haxha S, Ademgil H, Abdelmalek F, Aggoun A (2014) A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photon J 6(4):1–11
Paliwal A, Gaur R, Sharma A, Tomar M, Gupta V (2016) Sensitive optical biosensor based on surface plasmon resonance using zno/au bilayered structure. Optik - Int J Light Electron Opt 127(19):7642–7647
Patnaik A, Senthilnathan K, Jha R (2015) Graphene-based conducting metal oxide coated d-shaped optical fiber spr sensor. IEEE Photon Technol Lett 27(23):2437–2440
Rifat AA, Ahmed R, Mahdiraji GA, Adikan FM (2017) Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-ir. IEEE Sensors J 17(9):2776–2783
Rifat AA, Mahdiraji GA, Ahmed R, Chow DM, Sua Y, Shee Y, Adikan FM (2016) Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photon J 8(1):1–8
Sharma AK, Jha R, Gupta B (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J 7(8):1118–1129
Shi F, Peng L, Zhou G, Cang X, Hou Z, Xia C (2015) An elliptical core d-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit. Plasmonics 10(6):1263–1268
Smith CM, Venkataraman N, Gallagher MT, Müller D, West JA, Borrelli NF, Allan DC, Koch KW (2003) Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424(6949):657
Song B, Li D, Qi W, Elstner M, Fan C, Fang H (2010) Graphene on au (111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. Chem Phys Chem 11(3):585–589
Vial A, Grimault AS, Macías D, Barchiesi D, de La Chapelle ML (2005) Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Physical Review B 71(8):085,416
Wu L, Chu H, Koh W, Li E (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14,395–14,400
Wu T, Shao Y, Wang Y, Cao S, Cao W, Zhang F, Liao C, He J, Huang Y, Hou M (2017) Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25(17):20,313
Yang X, Lu Y, Wang M, Yao J (2016) Spr sensor based on exposed-core grapefruit fiber with bimetallic structure. IEEE Photon Technol Lett 28(6):649–652
Ying Y, Si GY, Luan FJ, Xu K, Qi YW, Li HN (2017) Recent research progress of optical fiber sensors based on d-shaped structure. Opt Laser Technol 90:149–157
Zhang Y, Zhou C, Xia L, Yu X, Liu D (2011) Wagon wheel fiber based multichannel plasmonic sensor. Opt Express 19(23):22,863–22,873
Zhang Z, Shi Y, Bian B, Lu J (2008) Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt Express 16(3):1915–1922
Zhao D, Chen X, Zhou K, Zhang L, Bennion I, MacPherson WN, Barton JS, Jones JD (2004) Bend sensors with direction recognition based on long-period gratings written in d-shaped fiber. Appl Opt 43(29):5425–5428