Ultra-small pyomelanin nanogranules abiotically derived from bacteria-secreted homogentisic acid show potential applications in inflammation and cancer

Springer Science and Business Media LLC - Tập 10 - Trang 191-203 - 2019
Sreeja Narayanan1,2, Noble K. Kurian1, Sarita G. Bhat1,2
1Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
2Interuniversity Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, India

Tóm tắt

Melanins are a ubiquitous group of pigments widely acclaimed as potent free-radical scavengers. The present study proposed to harness this property of melanins for anti-inflammatory and anti-cancer applications. Pyomelanin, a potent form of melanin analogous to alkaptomelanin in humans, was derived from Pseudoalteromonas species and fabricated into ultra-small pyomelanin nanogranules (PNGs) by facile routes. These melanin nanogranules were characterized for various physicochemical attributes using DLS, TEM, FTIR, EPR, XRD, and TGDA. Additionally, elemental analysis and long-term particle stability study was also conducted. The ultra-small particles were ~ 5–7 nm in size through TEM with a very strict size distribution. The free-radical scavenging activity of PNG assessed through the DPPH assay was comparable with that of ascorbic acid. Significant inflammatory markers viz., cyclooxygenase, lipoxygenase, myeloperoxidase, and cellular nitrate levels estimated in lipopolysaccharide-triggered RAW264.7 cells were reduced upon PNG treatment. The cancer cell kill effect of PNG was estimated in lung carcinoma cells in comparison with normal fibroblasts, wherein percentage inhibition in cancer cells was ~ 2-fold higher than that observed in normal fibroblasts. Overall, our results demonstrate the proof-of-principle of using pyomelanin nanogranules for therapeutic applications.

Tài liệu tham khảo

Allen, R., & Tresini, M. (2000). Oxidative stress and gene regulation. Free Radical Biology and Medicine, 28, 463–499. https://doi.org/10.1016/S0891-5849(99)00242-7. Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free radical biology & medicine, 49, 1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9. Brod, S. A. (2000). Unregulated inflammation shortens human functional longevity. Inflammation Research, 49, 561–570. https://doi.org/10.1007/s000110050632. Vonkeman, H. E., & van de Laar, M. A. F. J. (2010). Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention. Seminars in Arthritis and Rheumatism, 39, 294–312. https://doi.org/10.1016/j.semarthrit.2008.08.001. Boelsterli, U. A. (2002). Mechanisms of NSAID-induced hepatotoxicity focus on nimesulide. Drug Safety, 25, 633–648. https://doi.org/10.2165/00002018-200225090-00003. Hörl, W. H. (2010). Nonsteroidal anti-inflammatory drugs and the kidney. Pharmaceuticals, 3, 2291–2321. https://doi.org/10.3390/ph3072291. McGettigan, P., & Henry, D. (2011). Cardiovascular risk with non-steroidal anti-inflammatory drugs: Systematic review of population-based controlled observational studies. PLoS Medicine, 8, e1001098. https://doi.org/10.1371/journal.pmed.1001098. McCarberg, B., & Gibofsky, A. (2012). Need to develop new nonsteroidal anti-inflammatory drug formulations. Clinical Therapeutics, 34(9), 1954–1963. https://doi.org/10.1016/j.clinthera.2012.08.005. Chen, L., Liu, T., Wang, Q., & Liu, J. (2017). Anti-inflammatory effect of combined tetramethylpyrazine, resveratrol and curcumin in vivo. BMC Complementary and Alternative Medicine, 17, 233. https://doi.org/10.1186/s12906-017-1739-7. Chen, S., Liang, Q., Xie, S., Liu, E., Yu, Z., Sun, L., et al. (2016). Curcumin based combination therapy for anti-breast cancer: from in vitro drug screening to in vivo efficacy evaluation. Frontiers of Chemical Science and Engineering, 10, 383–388. https://doi.org/10.1007/s11705-016-1574-2. Watt, A. A. R., Bothma, J. P., & Meredith, P. (2009). The supramolecular structure of melanin. Soft Matter, 5, 3754. https://doi.org/10.1039/b902507c. Panzella, L., Gentile, G., D’Errico, G., Della Vecchia, N. F., Errico, M. E., Napolitano, A., et al. (2013). Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties. Angewandte Chemie - International Edition, 52, 12684–12687. https://doi.org/10.1002/anie.201305747. Costa, T. G., Younger, R., Poe, C., Farmer, P. J., & Szpoganicz, B. (2012). Studies on synthetic and natural melanin and its affinity for Fe(III) ion. Bioinorganic Chemistry and Applications, 2012, 712840. https://doi.org/10.1155/2012/712840. Kim, D. J., Ju, K. Y., & Lee, J. K. (2012). The synthetic melanin nanoparticles having an excellent binding capacity of heavy metal ions. Bulletin of the Korean Chemical Society, 33, 3788–3792. https://doi.org/10.5012/bkcs.2012.33.11.3788. Liopo, A., Su, R., & Oraevsky, A. A. (2015). Melanin nanoparticles as a novel contrast agent for optoacoustic tomography. Photoacoustics, 3, 35–43. https://doi.org/10.1016/j.pacs.2015.02.001. Zhang, R., Fan, Q., Yang, M., Cheng, K., Lu, X., Zhang, L., et al. (2015). Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy. Advanced Materials, 27, 5063–5069. https://doi.org/10.1002/adma.201502201. Kurian, K,Ck, N.,Nair, A. H., & Bhat, S. (2014). A novel melanin producing Pseudoalteromonas lipolytica BTCZ28 isolated from 96m depth marine sediments. https://doi.org/10.13140/2.1.1926.8803 YABUUCHI, E., & OHYAMA, A. (1972). Characterization of “pyomelanin”-producing strains of Pseudomonas aeruginosa. International Journal of Systematic Bacteriology, 22, 53–64. https://doi.org/10.1099/00207713-22-2-53. Zeng, Z., Guo, X. P., Cai, X., Wang, P., Li, B., Yang, J. L., & Wang, X. (2017). Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling. Microbial Biotechnology, 10, 1718–1731. https://doi.org/10.1111/1751-7915.12773. Turick, C. E., Knox, A. S., Becnel, J. M., & Ekechukwu, A. A. M. C. (2010). Properties and function of pyomelanin. (Elnashar M, Ed.). InTech. https://doi.org/10.5772/10273. Sajjan, S., Kulkarni, G., Yaligara, V., Kyoung, L., & Karegoudar, T. B. (2010). Purification and physiochemical characterization of melanin pigment from klebsiella sp. GSK. Journal of Microbiology and Biotechnology, 20, 1513–1520. https://doi.org/10.4014/jmb.1002.02006. Zonios, G., Bykowski, J., & Kollias, N. (2001). Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. Journal of Investigative Dermatology, 117, 1452–1457. https://doi.org/10.1046/j.0022-202x.2001.01577.x. Mbonyiryivuze, A., Omollo, I., Ngom, B. D., Mwakikunga, B., Dhlamini, S. M., Park, E., & Maaza, M. (2015). Natural dye sensitizer for Grӓtzel cells: sepia melanin. Physics and Materials Chemistry, 3, 1–6. https://doi.org/10.12691/pmc-3-1-1. Della Vecchia, N. F., Luchini, A., Napolitano, A., Derrico, G., Vitiello, G., Szekely, N., et al. (2014). Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir, 30, 9811–9818. https://doi.org/10.1021/la501560z. Plonka, P. M. (2009). Electron paramagnetic resonance as a unique tool for skin and hair research. Experimental Dermatology, 18, 472–484. https://doi.org/10.1111/j.1600-0625.2009.00883.x. Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. K. (2013). Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. International Journal of Biological Macromolecules, 58, 263–274. https://doi.org/10.1016/j.ijbiomac.2013.04.041. Wang, Z., Keller, L. M. M., Dillon, J., & Gaillard, E. R. (2006). Oxidation of A2E results in the formation of highly reactive aldehydes and ketones. Photochemistry and Photobiology, 8, 474–479. https://doi.org/10.1562/2006-04-01-ra-864. Rózanowska, M., Sarna, T., Land, E. J., & Truscott, T. G. (1999). Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radical Biology and Medicine, 26, 518–525. https://doi.org/10.1016/S0891-5849(98)00234-2. Różanowska, M., Sarna, T., Land, E. J., & Truscott, T. G. (1999). Free radical scavenging properties of melanin. Free Radical Biology and Medicine. https://doi.org/10.1016/S0891-5849(98)00234-2. Rådmark, O., Werz, O., Steinhilber, D., & Samuelsson, B. (2007). 5-lipoxygenase: regulation of expression and enzyme activity. Trends in Biochemical Sciences. https://doi.org/10.1016/j.tibs.2007.06.002. Kurian, K., Noble, & Bhat, S. (2018). Food, cosmetic and biological applications of characterized DOPA-melanin from Vibrio alginolyticus strain BTKKS3. Applied Biological Chemistry, 61, 163–171. Kurian, N. K., Nair, H. P., & Bhat, S. G. (2015). Evaluation of anti-inflammatory property of melanin from marine bacillus spp. BTCZ31. Asian Journal of Pharmaceutical and Clinical Research, 8, 251–255. Yang, M. H., Yoon, K. D., Chin, Y. W., Park, J. H., & Kim, J. (2009). Phenolic compounds with radical scavenging and cyclooxygenase-2 (COX-2) inhibitory activities from Dioscorea opposita. Bioorganic and Medicinal Chemistry, 17, 2689–2694. https://doi.org/10.1016/j.bmc.2009.02.057. Jayesh, K., Helen, L. R., Vysakh, A., Binil, E., & Latha, M. S. (2017). In vivo toxicity evaluation of aqueous acetone extract of Terminalia bellirica (Gaertn.) Roxb. fruit. Regulatory Toxicology and Pharmacology, 95, 1654–1660. https://doi.org/10.1016/j.yrtph.2017.04.002. MASUDA, T., SOMEYA, T., & FUJIMOTO, A. (2010). Phenolic inhibitors of chemical and enzymatic oxidation in the leaves of Myrica rubra. Bioscience, Biotechnology, and Biochemistry, 74, 212–215. https://doi.org/10.1271/bbb.90697. Lee, T. H., Jung, M., Bang, M. H., Chung, D. K., & Kim, J. (2012). Inhibitory effects of a spinasterol glycoside on lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines via down-regulating MAP kinase pathways and NF-κB activation in RAW264.7 macrophage cells. International Immunopharmacology, 13, 264–270. https://doi.org/10.1016/j.intimp.2012.05.005. Ittiyavirah, S. P. M. A. R. P. R. R. (2014). Inhibition of growth and induction of apoptosis in PC3 and A549 cell lines by hydro alcoholic fruit extract of Morinda tinctoria roxb: in vitro analysis. Journal of Scientific and Innovative Research, 3, 303–307.