Ultra-photo-stable coherent random laser based on liquid waveguide gain channels doped with boehmite nanosheets
Tài liệu tham khảo
Cao, 2002, Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II, Nat. Mater., 1, 111, 10.1038/nmat727
Redding, 2012, Speckle-free laser imaging using random laser illumination, Nat. Photonics, 6, 355, 10.1038/nphoton.2012.90
Wiersma, 2008, The physics and applications of random lasers, Nat. Phys., 4, 359, 10.1038/nphys971
Polson, 2004, Random lasing in human tissues, Appl. Phys. Lett., 85, 1289, 10.1063/1.1782259
Gaio, 2017, Gain-based mechanism for pH sensing based on random lasing, Phys. Rev. Appl., 7, 034005, 10.1103/PhysRevApplied.7.034005
Ismail, 2016, Dopamine sensing and measurement using threshold and spectral measurements in random lasers, Opt. Express, 24, A85, 10.1364/OE.24.000A85
Abegão, 2017, Random laser emission from a Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel, Laser Phys. Lett., 14, 065801, 10.1088/1612-202X/aa699b
Cui, 2015, Retrieval of contaminated information using random lasers, Appl. Phys. Lett., 106, 201101, 10.1063/1.4921327
Zhang, 2014, Coherent random lasing from liquid waveguide gain channels with biological scatters, Appl. Phys. Lett., 105, 253702, 10.1063/1.4905035
Lawandy, 1994, Laser action in strongly scattering media, Nature, 368, 436, 10.1038/368436a0
Cao, 2003, Random lasers with coherent feedback, IEEE J. Sel. Top. Quantum Electron., 9, 111, 10.1109/JSTQE.2002.807975
de Matos, 2007, Random fiber laser, Phys. Rev. Lett., 99, 153903, 10.1103/PhysRevLett.99.153903
Cao, 1999, Random laser action in semiconductor powder, Phys. Rev. Lett., 82, 2278, 10.1103/PhysRevLett.82.2278
Dominguez, 2015, Multi-photon excited coherent random laser emission in ZnO powders, Nanoscale, 7, 317, 10.1039/C4NR05336B
Nakamura, 2015, Discrete-mode ZnO microparticle random laser, Opt. Lett., 40, 2661, 10.1364/OL.40.002661
Shang, 2017, Random lasing assisted by CuSO 4 and Au nanoparticles in random gain systems, Opt. Mater. Express, 7, 1848, 10.1364/OME.7.001848
Wang, 2016, Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles, Opt. Express, 24, 17593, 10.1364/OE.24.017593
Zhu, 2015, Random laser emission in a sphere-phase liquid crystal, Appl. Phys. Lett., 106, 191903, 10.1063/1.4921325
Song, 2006, Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser, Phys. Rev. Lett., 96, 033902, 10.1103/PhysRevLett.96.033902
Lin, 2014, Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes, Opt. Mater. Express, 4, 1555, 10.1364/OME.4.001555
Lin, 2015, Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary, IEEE Photonics J., 7, 1501809, 10.1109/JPHOT.2015.2421441
Du, 2016, Short cavity-length random fiber laser with record power and ultrahigh efficiency, Opt. Lett., 41, 571, 10.1364/OL.41.000571
Zhang, 2015, All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings, Opt. Lett., 40, 3181, 10.1364/OL.40.003181
Lahoz, 2015, Random laser in biological tissues impregnated with a fluorescent anticancer drug, Laser Phys. Lett., 12, 045805, 10.1088/1612-2011/12/4/045805
Li, 2008, Optofluidic dye lasers, Microfluid. Nanofluid., 4, 145, 10.1007/s10404-007-0225-9
Chen, 2010, Optofluidic microcavities: dye-lasers and biosensors, Biomicrofluidics, 4, 043002, 10.1063/1.3499949
Fan, 2014, The potential of optofluidic biolasers, Nat. Methods, 11, 141, 10.1038/nmeth.2805
Lin, 2015, Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary, IEEE Photonics J., 7, 1501809, 10.1109/JPHOT.2015.2421441
Hong, 2015, Coherent random laser based on liquid waveguide gain channels, J. Mod. Opt., 62, 865, 10.1080/09500340.2015.1009953
Ye, 2016, Coherent random lasing from liquid waveguide gain layer containing silica nanoparticles, Laser Phys. Lett., 13, 105002, 10.1088/1612-2011/13/10/105002
Cyprych, 2014, Starch Application of biopolymer in random lasing, Org. Electron., 15, 2218, 10.1016/j.orgel.2014.06.027
Yariv, 2001, Efficiency and photostability of dye-doped solid-state lasers in different hosts, Opt. Mater., 16, 29, 10.1016/S0925-3467(00)00056-2
Feng, 2014, Superhydrophobic aluminum alloy surface: fabrication, structure, and corrosion resistance, Coll. Surf. A, 441, 319, 10.1016/j.colsurfa.2013.09.014
Seo, 2010, Mechanism of aluminum hydroxide layer formation by surface modification of aluminum, Appl. Surf. Sci., 256, 4434, 10.1016/j.apsusc.2010.01.011
Kloprogge, 2006, XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-)boehmite, J. Colloid Interface Sci., 296, 572, 10.1016/j.jcis.2005.09.054
Yi, 2016, Waveguide random laser based on a disordered ZnSe-nanosheets arrangement, Opt. Express, 24, 5102, 10.1364/OE.24.005102
Cerdán, 2012, Random lasing from sulforhodamine dye-doped polymer films with high surface roughness, Appl. Phys. B, 108, 839, 10.1007/s00340-012-5120-8
Polson, 2001, Random lasing in pi-conjugated films and infiltrated opals, Adv. Mater., 13, 760, 10.1002/1521-4095(200105)13:10<760::AID-ADMA760>3.0.CO;2-Z