Ultra low power offering 14 nm bulk double gate FinFET based SRAM cells

Sustainable Computing: Informatics and Systems - Tập 35 - Trang 100685 - 2022
Damodhar Rao M.1, Narayana Y.V.2, Prasad V.V.K.D.V.3
1JNTUK, Kakinada, AP, India
2Department of ECE, Tirumala Engineering College, Narsaraopet, Guntur, AP, India
3Department of ECE, Gudlavalleru Engineering College, Gudlavalleru, Krishna, AP, India

Tài liệu tham khảo

Deepak, 2020, Certain investigations in achieving low power dissipation for SRAM cell, Microprocess. Microsyst., 77, 103166, 10.1016/j.micpro.2020.103166 Duari, 2020, Low leakage SRAM cell with improved stability for iot applications, Procedia Comput. Sci., 171, 1469, 10.1016/j.procs.2020.04.157 Sharma, 2018, A write‐improved low‐power 12T SRAM cell for wearable wireless sensor nodes, Int. J. Circuit Theory Appl., 46, 2314, 10.1002/cta.2555 Saxena, 2017, Low-power and high-speed 13T SRAM cell using FinFETs, IET Circuits Devices Syst., 11, 250, 10.1049/iet-cds.2016.0287 Asli, 2020, Reliable and high performance asymmetric FinFET SRAM cell using back-gate control, Microelectron. Reliab., 104, 113545, 10.1016/j.microrel.2019.113545 Kumar, 2019, Design and analysis of CNTFET based 10T SRAM for high performance at nanoscale, Int. J. Circuit Theory Appl., 47, 1775, 10.1002/cta.2696 Lorenzo, 2020, Single bit‐line 11T SRAM cell for low power and improved stability, IET Comput. Digit. Tech., 14, 114, 10.1049/iet-cdt.2019.0234 Mahmoodi, 2020, Design space exploration of low-power flip-flops in FinFET technology, Integration, 75, 52, 10.1016/j.vlsi.2020.06.006 Kumar, 2020, Implementation of cache memory and fir filter using FINFETs at 22 nm technology for SOC designs, Microprocess. Microsyst., 77, 103191, 10.1016/j.micpro.2020.103191 Gupta, 2020, An energy‐efficient data‐dependent low‐power 10T SRAM cell design for LiFi enabled smart street lighting system application, Int. J. Numer. Model. Electron. Netw. Devices Fields, 33, 10.1002/jnm.2766 Tayal, 2018, Performance analysis of junctionless DG-MOSFET-based 6T-SRAM with gate-stack configuration, Micro Nano Lett., 13, 838, 10.1049/mnl.2017.0702 Lu, 2020, A 270-mV 6T SRAM using row-based dual-phase VDD control in 28-nm CMOS, IEEE Trans. Circuits Syst. I Regul. Pap., 67, 4774, 10.1109/TCSI.2020.3019578 Hu, 2016, Reliability-tolerant design for ultra-thin-body GeOI 6T SRAM cell and sense amplifier, IEEE J. Electron Devices Soc., 5, 107, 10.1109/JEDS.2016.2644724 Kumar, 2018, Design of highly reliable energy-efficient SEU tolerant 10T SRAM cell, Electron. Lett., 54, 1423, 10.1049/el.2018.7267 Satyanarayana, 2020, Device and circuit level design, characterization and implementation of low power 7T SRAM cell using heterojunction tunneling transistors with oxide overlap, Microprocess. Microsyst., 77, 103164, 10.1016/j.micpro.2020.103164 Kumar, 2021, Low power, high-performance reversible logic enabled CNTFET SRAM cell with improved stability, Mater. Today Proc., 42, 1617, 10.1016/j.matpr.2020.06.475 Zeinali, 2017, Low‐leakage sub‐threshold 9 T‐SRAM cell in 14‐nm FinFET technology, Int. J. Circuit Theory Appl., 45, 1647, 10.1002/cta.2280 Mushtaq, 2020, Design and analysis of INDEP FinFET SRAM cell at 7‐nm technology, Int. J. Numer. Model. Electron. Netw. Devices Fields, 33, 10.1002/jnm.2730 Gopal, 2017, Evaluation of static noise margin of 6T SRAM cell using SiGe/SiC asymmetric dual-k spacer FinFETs, Micro Nano Lett., 12, 1028, 10.1049/mnl.2017.0318 Rezaei, 2020, Evaluation of a COTS 65-nm SRAM under 15 MeV protons and 14 MeV neutrons at low VDD, IEEE Trans. Nucl. Sci., 67, 2188, 10.1109/TNS.2020.3023287 Kanhaiya, 2019, Carbon nanotube-based CMOS SRAM: 1 kbit 6T SRAM arrays and 10T SRAM cells, IEEE Trans. Electron Devices, 66, 5375, 10.1109/TED.2019.2945533 Thakuria, 2020, 2-D strain FET (2D-SFET) based SRAMs—part I: device-circuit interactions, IEEE Trans. Electron Devices, 67, 4866, 10.1109/TED.2020.3022344 Zhang, 2019, Modeling of FinFET SRAM array reliability degradation due to electromigration, Microelectron. Reliab., 100, 113485, 10.1016/j.microrel.2019.113485 Kumar, 2020, Performance evaluation of linearity and intermodulation distortion of nanoscale GaN-SOI FinFET for RFIC design, AEU-Int. J. Electron. Commun., 115, 153052, 10.1016/j.aeue.2019.153052 Walke, 2017, Design strategies for ultra-low power 10 nm FinFETs, Solid. Electron., 136, 75, 10.1016/j.sse.2017.06.012 Manikandan, 2019, Impact of uniform and non-uniform doping variations for ultrathin body junctionless FinFETs, Mater. Sci. Semicond. Process., 104, 104653, 10.1016/j.mssp.2019.104653 Khan, 2019, Leakage suppression approaches in bulk FinFETs, Mater. Today Proc., 11, 1054, 10.1016/j.matpr.2018.12.038 Singh, 2020, Investigation of statistical variability in non-uniformly doped bulk junctionless FinFET, Mater. Sci. Semicond. Process., 113, 105041, 10.1016/j.mssp.2020.105041 Jegadheesan, 2020, Improved statistical variability and delay performance with junctionless inserted oxide FinFET, AEU-Int. J. Electron. Commun., 115, 153030, 10.1016/j.aeue.2019.153030 Yang, 2020, Study on device reliability for P-type FinFETs with different fin numbers, Vacuum, 181, 109601, 10.1016/j.vacuum.2020.109601 Vashishtha, 2021, Comparing bulk-Si FinFET and gate-all-around FETs for the 5 nm technology node, Microelectron. J., 107, 104942, 10.1016/j.mejo.2020.104942 Min, 2020, Gate-induced drain leakage (GIDL) in MFMIS and MFIS negative capacitance FinFETs, Curr. Appl. Phys., 20, 1222, 10.1016/j.cap.2020.08.008 Lee, 2020, AlInGaN/GaN double-channel FinFET with high on-current and negligible current collapse, Solid. Electron., 164, 107678, 10.1016/j.sse.2019.107678 Grover, 2017, A 32 kb 0.35–1.2 V, 50 MHz–2.5 GHz bit-interleaved SRAM with 8 T SRAM cell and data dependent write assist in 28-nm UTBB-FDSOI CMOS, IEEE Trans. Circuits Syst. I Regul. Pap., 64, 2438, 10.1109/TCSI.2017.2705116 Turi, 2019, Effective low leakage 6T and 8T FinFET SRAMs: using cells with reverse-biased FinFETs, near-threshold operation, and power gating, IEEE Trans. Circuits Syst. II Express Briefs, 67, 765 Patel, 2019, Design of an ultralow power CNTFET based 9T SRAM with shared BL and half select free techniques, Int. J. Numer. Model. Electron. Netw. Devices Fields, 32, 10.1002/jnm.2511 Lin, 2019, Read-decoupled 8T1R non-volatile SRAM with dual-mode option and high restore yield, Electron. Lett., 55, 519, 10.1049/el.2019.0295 Kim, 2020, SRAM on-chip monitoring methodology for high yield and energy efficient memory operation at near threshold voltage, Integration, 74, 81, 10.1016/j.vlsi.2020.04.005 Shaik, 2020, Analysis of SRAM metrics for data dependent BTI degradation and process variability, Integration, 72, 148, 10.1016/j.vlsi.2020.01.006 Gao, 2020, A low-power small-area 6T SRAM cell for tracking detector applications, Nucl. Instrum. Methods Phys. Res. A, 980, 164434, 10.1016/j.nima.2020.164434