Ultra-high-energy cosmic rays
Tài liệu tham khảo
Abbott, 2017, Multi-messenger observations of a binary neutron star merger, Astrophys. J., 848, L12, 10.3847/2041-8213/aa91c9
Aartsen, 2018, Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science, 361
Aab, 2018, Indication of anisotropy in arrival directions of ultra-high-energy cosmic rays through comparison to the flux pattern of extragalactic gamma-ray sources, Astrophys. J. Lett., 853, L29, 10.3847/2041-8213/aaa66d
Anchordoqui, 1999, Heavy nuclei at the end of the cosmic ray spectrum?, Phys. Rev. D, 60, 10.1103/PhysRevD.60.103001
Abbasi, 2008, First observation of the Greisen-Zatsepin-Kuzmin suppression, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.101101
Abraham, 2008, Observation of the suppression of the flux of cosmic rays above 4×1019 eV, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.061101
Abraham, 2010, Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory, Phys. Lett. B, 685, 239, 10.1016/j.physletb.2010.02.013
Greisen, 1966, End to the cosmic ray spectrum?, Phys. Rev. Lett., 16, 748, 10.1103/PhysRevLett.16.748
Zatsepin, 1966, Upper limit of the spectrum of cosmic rays, JETP Lett., 4, 78
Ade, 2016, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13, 10.1051/0004-6361/201525830
Tanabashi, 2018, Review of particle physics, Phys. Rev. D, 98, 10.1103/PhysRevD.98.030001
L.A. Anchordoqui, Ultra-high-energy cosmic rays: facts, myths, and legends, doi:10.5170/CERN-2013-003.303, arXiv:1104.0509 [hep-ph].
L.A. Anchordoqui, et al. Roadmap for ultra-high energy cosmic ray physics and astronomy (whitepaper for Snowmass 2013), arXiv:1307.5312 [astro-ph.HE].
Anchordoqui, 2003, Ultrahigh-energy cosmic rays: The state of the art before the Auger Observatory, Internat. J. Modern Phys. A, 18, 2229, 10.1142/S0217751X03013879
Torres, 2004, Astrophysical origins of ultrahigh energy cosmic rays, Rep. Progr. Phys., 67, 1663, 10.1088/0034-4885/67/9/R03
Anchordoqui, 2004, High energy physics in the atmosphere: Phenomenology of cosmic ray air showers, Ann. Physics, 314, 145, 10.1016/j.aop.2004.07.003
Hess, 1912, Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten [Observation of penetrating radiation in seven free balloon flights], Phys. Z., 13, 1084
Auger, 1938, Grandes gerbes cosmiques atmosphériques contenant des corpuscules ultrapénétrants [Extensive cosmic showers in the atmosphere containing ultra-penetrating particles], Compt. Rend. Hebd. Seances Acad. Sci., 206, 1721
Auger, 1939, Extensive cosmic ray showers, Rev. Modern Phys., 11, 288, 10.1103/RevModPhys.11.288
Clark, 1961, Cosmic-ray air showers at sea level, Phys. Rev., 122, 637, 10.1103/PhysRev.122.637
Linsley, 1963, Evidence for a primary cosmic-ray particle with energy 1020 eV, Phys. Rev. Lett., 10, 146, 10.1103/PhysRevLett.10.146
Penzias, 1965, A measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J., 142, 419, 10.1086/148307
Stecker, 1969, Photodisintegration of ultrahigh-energy cosmic rays by the universal radiation field, Phys. Rev., 180, 1264, 10.1103/PhysRev.180.1264
Puget, 1976, Photonuclear interactions of ultrahigh-energy cosmic rays and their astrophysical consequences, Astrophys. J., 205, 638, 10.1086/154321
Nagano, 2000, Observations and implications of the ultrahigh-energy cosmic rays, Rev. Modern Phys., 72, 689, 10.1103/RevModPhys.72.689
Kampert, 2012, Extensive air showers and ultra-high-energy cosmic rays: a historical review, Eur. Phys. J. H, 37, 359, 10.1140/epjh/e2012-30013-x
Baltrusaitis, 1985, The Utah Fly’s Eye detector, Nucl. Instrum. Methods A, 240, 410, 10.1016/0168-9002(85)90658-8
Abu-Zayyad, 2000, The prototype high-resolution Fly’s Eye cosmic ray detector, Nucl. Instrum. Methods A, 450, 253, 10.1016/S0168-9002(00)00307-7
Abu-Zayyad, 2013, The surface detector array of the telescope array experiment, Nucl. Instrum. Methods A, 689, 87, 10.1016/j.nima.2012.05.079
Tokuno, 2012, New air fluorescence detectors employed in the telescope array experiment, Nucl. Instrum. Methods A, 676, 54, 10.1016/j.nima.2012.02.044
Abraham, 2004, Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instrum. Methods A, 523, 50, 10.1016/j.nima.2003.12.012
A. Aab, et al. [Pierre Auger Collaboration], The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference, ICRC 2017, arXiv:1708.06592 [astro-ph.HE].
Abraham, 2010, Trigger and aperture of the surface detector array of the Pierre Auger Observatory, Nucl. Instrum. Methods A, 613, 29, 10.1016/j.nima.2009.11.018
Abraham, 2010, The fluorescence detector of the Pierre Auger Observatory, Nucl. Instrum. Methods A, 620, 227, 10.1016/j.nima.2010.04.023
Abreu, 2011, The exposure of the hybrid detector of the Pierre Auger Observatory, Astropart. Phys., 34, 368, 10.1016/j.astropartphys.2010.10.001
Rybicki, 1979
M. Kachelriess, Lecture notes on high energy cosmic rays, arXiv:0801.4376 [astro-ph].
Maurin, 2014, A database of charged cosmic rays, Astron. Astrophys., 569, A32, 10.1051/0004-6361/201321344
Anchordoqui, 1999, Hadronic interactions models beyond collider energies, Phys. Rev. D, 59, 10.1103/PhysRevD.59.094003
Garcia Canal, 2009, Testing hadronic interaction packages at cosmic ray energies, Phys. Rev. D, 79
Gondolo, 1996, Charm production and high-energy atmospheric muon and neutrino fluxes, Astropart. Phys., 5, 309, 10.1016/0927-6505(96)00033-3
Aab, 2016, Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.192001
Linsley, 1981, Validity of scaling to 1020 eV and high-energy cosmic ray composition, Phys. Rev. Lett., 46, 459, 10.1103/PhysRevLett.46.459
Landau, 1953, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, Dokl. Akad. Nauk Ser. Fiz., 92, 535
Migdal, 1956, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev., 103, 1811, 10.1103/PhysRev.103.1811
Abraham, 2007, An upper limit to the photon fraction in cosmic rays above 1019-eV from the Pierre Auger Observatory, Astropart. Phys., 27, 155, 10.1016/j.astropartphys.2006.10.004
Abraham, 2008, Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory, Astropart. Phys., 29, 243, 10.1016/j.astropartphys.2008.01.003
Abraham, 2009, Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory, Astropart. Phys., 31, 399, 10.1016/j.astropartphys.2009.04.003
Aab, 2017, Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory, J. Cosmol. Astropart. Phys., 1704, 009, 10.1088/1475-7516/2017/04/009
Abraham, 2010, Measurement of the depth of maximum of extensive air showers above 1018 eV, Phys. Rev. Lett., 104
Aab, 2014, Depth of maximum of air-shower profiles at the Pierre Auger Observatory I: Measurements at energies above 1017.8 eV, Phys. Rev. D, 90, 10.1103/PhysRevD.90.122005
Unger, 2017, Highlights from the Pierre Auger Observatory, PoS ICRC, 2017, 1102
Abbasi, 2014, Study of ultrahigh energy cosmic ray composition using telescope array’s middle drum detector and surface array in hybrid mode, Astropart. Phys., 64, 49, 10.1016/j.astropartphys.2014.11.004
Abbasi, 2016, Report of the working group on the composition of ultrahigh energy cosmic rays, JPS Conf. Proc., 9
R.U. Abbasi, et al. [Telescope Array Collaboration], Depth of ultra-high energy cosmic ray induced air shower maxima measured by the Telescope Array Black Rock and Long Ridge FADC fluorescence detectors and surface array in hybrid mode, arXiv:1801.09784 [astro-ph.HE].
Hanlon, 2018, Report of the working group on the mass composition of ultrahigh energy cosmic rays, JPS Conf. Proc., 19
Aab, 2016, Evidence for a mixed mass composition at the ankle in the cosmic-ray spectrum, Phys. Lett. B, 762, 288, 10.1016/j.physletb.2016.09.039
Aab, 2017, Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory, Phys. Rev. D, 96, 10.1103/PhysRevD.96.122003
Ivanov, 2016, TA spectrum summary, PoS ICRC, 2015, 349
Aab, 2014, Depth of maximum of air-shower profiles at the Pierre Auger Observatory II: Composition implications, Phys. Rev. D, 90, 10.1103/PhysRevD.90.122006
A. Aab, et al. [Pierre Auger Collaboration], The Pierre Auger Observatory contributions to the 34th International Cosmic Ray Conference, ICRC 2015, arXiv:1509.03732 [astro-ph.HE].
Engelmann, 1990, Charge composition and energy spectra of cosmic-ray for elements from Be to NI: Results from HEAO-3-C2, Astron. Astrophys., 233, 96
Juliusson, 1974, Charge composition and energy spectra of cosmic-ray nuclei at energies above 20 GeV per nucleon, Astrophys. J., 191, 331, 10.1086/152972
Adriani, 2011, PAMELA measurements of cosmic-ray proton and helium spectra, Science, 332, 69, 10.1126/science.1199172
Adriani, 2013, Time dependence of the proton flux measured by PAMELA during the July 2006 - December 2009 solar minimum, Astrophys. J., 765, 91, 10.1088/0004-637X/765/2/91
Aguilar, 2015, Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.171103
Aguilar, 2015, Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.211101
Aguilar, 2017, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.251101
Ahn, 2009, Energy spectra of cosmic-ray nuclei at high energies, Astrophys. J., 707, 593, 10.1088/0004-637X/707/1/593
Yoon, 2011, Cosmic-ray proton and helium spectra from the first CREAM flight, Astrophys. J., 728, 122, 10.1088/0004-637X/728/2/122
Maestro, 2009, Measurements of cosmic-ray energy spectra with the 2nd CREAM flight, Nuclear Phys. Proc. Suppl., 196, 239, 10.1016/j.nuclphysbps.2009.09.045
Yoon, 2017, Proton and helium spectra from the CREAM-III flight, Astrophys. J., 839, 5, 10.3847/1538-4357/aa68e4
de Nolfo, 2006, Observations of the Li, Be, and B isotopes and constraints on cosmic-ray propagation, Adv. Space Res., 38, 1558, 10.1016/j.asr.2006.09.008
Lave, 2013, Galactic cosmic-ray energy spectra and composition during the 2009–2010 solar minimum period, Astrophys. J., 770, 117, 10.1088/0004-637X/770/2/117
Swordy, 1990, Relative abundances of secondary and primary cosmic rays at high energies, Astrophys. J., 349, 625, 10.1086/168349
Mueller, 1991, Energy spectra and composition of primary cosmic rays, Astrophys. J., 374, 356, 10.1086/170125
Aharonian, 2007, First ground based measurement of atmospheric Cherenkov light from cosmic rays, Phys. Rev. D, 75, 10.1103/PhysRevD.75.042004
P. Montini, et al. [ARGO-YBJ Collaboration], The bending of the proton plus helium flux in primary cosmic rays measured by the ARGO-YBJ experiment in the energy range from 20 TeV to 5 PeV, arXiv:1608.01389 [hep-ex].
Prosin, 2014, Tunka-133: Results of 3 year operation, Nucl. Instrum. Methods A, 756, 94, 10.1016/j.nima.2013.09.018
Korosteleva, 2007, Measurement of cosmic ray primary energy with the atmospheric Cherenkov light technique in extensive air showers, Nuclear Phys. Proc. Suppl., 165, 74, 10.1016/j.nuclphysbps.2006.11.012
M.G. Aartsen, et al. [IceCube Collaboration], The IceCube neutrino observatory contributions to ICRC 2015 Part III: cosmic rays, arXiv:1510.05225 [astro-ph.HE].
W.D. Apel, et al. [KASCADE-Grande Collaboration], The spectrum of high-energy cosmic rays measured with KASCADE-Grande, arXiv:1206.3834 [astro-ph.HE].
Schoo, 2016, The energy spectrum of cosmic rays in the range from 1014 to 1018eV, PoS ICRC, 2015, 263
Dembinski, 2017, Data-driven model of the cosmic-ray flux and mass composition from 10 GeV to 1011 GeV, PoS ICRC, 2017, 533
R.U. Abbasi, et al. Evidence for declination dependence of ultra-high-energy cosmic ray spectrum in the Northern hemisphere, arXiv:1801.07820 [astro-ph.HE].
R.U. Abbasi, et al. [Telescope Array Collaboration], Search for anisotropy in the ultra-high-energy cosmic ray spectrum using the Telescope Array surface detector, arXiv:1707.04967 [astro-ph.HE].
Gleeson, 1968, Solar modulation of galactic cosmic rays, Astrophys. J., 154, 1011, 10.1086/149822
Usoskin, 1936, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers, J. Geophys. Res. Space Phys., 116, A02104
Peters, 1961, Primary cosmic radiation and extensive air showers, Nuovo Cim., 22, 800, 10.1007/BF02783106
R.U. Abbasi, et al. The cosmic-ray energy spectrum between 2 PeV and 2 EeV observed with the TALE detector in monocular mode, arXiv:1803.01288 [astro-ph.HE].
Hillas, 1967, The energy spectrum of cosmic rays in an evolving universe, Phys. Lett. A, 24, 677, 10.1016/0375-9601(67)91023-7
Berezinsky, 2006, On astrophysical solution to ultrahigh-energy cosmic rays, Phys. Rev. D, 74, 10.1103/PhysRevD.74.043005
Aloisio, 2014, Ultrahigh energy cosmic rays: implications of Auger data for source spectra and chemical composition, J. Cosmol. Astropart. Phys., 1410, 020, 10.1088/1475-7516/2014/10/020
Unger, 2015, Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it, Phys. Rev. D, 92, 10.1103/PhysRevD.92.123001
Anchordoqui, 2015, Neutron β-decay as the origin of IceCube’s PeV (anti)neutrinos, Phys. Rev. D, 91, 10.1103/PhysRevD.91.027301
Farrar, 2016, The origin of the ankle in the UHECR spectrum, and of the extragalactic protons below it, PoS ICRC, 2015, 513
Aab, 2017, Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory, J. Cosmol. Astropart. Phys., 1704, 038, 10.1088/1475-7516/2017/04/038
Sommers, 2001, Cosmic ray anisotropy analysis with a full-sky observatory, Astropart. Phys., 14, 271, 10.1016/S0927-6505(00)00130-4
di Matteo, 2018, Arrival directions of cosmic rays at ultra-high energies, JPS Conf. Proc., 19
Abbasi, 2014, Indications of intermediate-scale anisotropy of cosmic rays with energy greater than 57 EeV in the Northern sky measured with the surface detector of the Telescope Array Experiment, Astrophys. J., 790, L21, 10.1088/2041-8205/790/2/L21
Abraham, 2007, Correlation of the highest energy cosmic rays with nearby extragalactic objects, Science, 318, 938, 10.1126/science.1151124
Aab, 2015, Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory, Astrophys. J., 804, 15, 10.1088/0004-637X/804/1/15
Li, 1983, Analysis methods for results in gamma-ray astronomy, Astrophys. J., 272, 317, 10.1086/161295
Matthews, 2017, Highlights from the Telescope Array, PoS ICRC, 2017, 1096
R.U. Abbasi, et al. Evidence of intermediate-scale energy spectrum anisotropy of cosmic rays E≥1019.2 eV with the Telescope Array surface detector, arXiv:1802.05003 [astro-ph.HE].
Anchordoqui, 2003, Full-sky search for ultra-high-energy cosmic ray anisotropies, Phys. Rev. D, 68, 10.1103/PhysRevD.68.083004
Denton, 2015, The fortuitous latitude of the Pierre Auger Observatory and Telescope Array for reconstructing the quadrupole moment, Astrophys. J., 802, 25, 10.1088/0004-637X/802/1/25
Aab, 2014, Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array, Astrophys. J., 794, 172, 10.1088/0004-637X/794/2/172
Denton, 2015, Sensitivity of full-sky experiments to large scale cosmic ray anisotropies, JHEAp, 8, 1
Linsley, 1975, Fluctuation effects on directional data, Phys. Rev. Lett., 34, 1530, 10.1103/PhysRevLett.34.1530
Wittkowski, 2018, On the anisotropy in the arrival directions of ultra-high-energy cosmic rays, Astrophys. J., 854, L3, 10.3847/2041-8213/aaa2f9
Aublin, 2005, Generalized 3d-reconstruction method of a dipole anisotropy in cosmic-ray distributions, Astron. Astrophys., 441, 407, 10.1051/0004-6361:20052833
Abreu, 2011, Search for first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory, Astropart. Phys., 34, 627, 10.1016/j.astropartphys.2010.12.007
Aab, 2015, Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°, Astrophys. J., 802, 111, 10.1088/0004-637X/802/2/111
Aab, 2017, Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8×1018 eV, Science, 357, 1266
Aab, 2018, Large-scale cosmic-ray anisotropies above 4 EeV measured by the Pierre Auger Observatory, Astrophys. J., 868, 4, 10.3847/1538-4357/aae689
Lemaitre, 1933, On Compton’s latitude effect of cosmic radiation, Phys. Rev., 43, 87, 10.1103/PhysRev.43.87
Swann, 1933, Application of Liouville’s theorem to electron orbits in the Earth’s magnetic field, Phys. Rev., 44, 224, 10.1103/PhysRev.44.224
Jansson, 2012, A new model of the galactic magnetic field, Astrophys. J., 757, 14, 10.1088/0004-637X/757/1/14
Jansson, 2012, The galactic magnetic field, Astrophys. J., 761, L11, 10.1088/2041-8205/761/1/L11
Unger, 2017, Uncertainties in the magnetic field of the Milky Way, PoS ICRC, 2017, 558
Compton, 1935, An apparent effect of galactic rotation on the intensity of cosmic rays, Phys. Rev., 47, 817, 10.1103/PhysRev.47.817
Kogut, 1993, Dipole anisotropy in the COBE DMR first year sky maps, Astrophys. J., 419, 1, 10.1086/173453
Hinshaw, 2009, Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Data processing, sky maps, and basic results, Astrophys. J. Suppl., 180, 225, 10.1088/0067-0049/180/2/225
Adam, 2015, Planck 2015 results I: Overview of products and scientific results, Astron. Astrophys., 594, A1
Kachelriess, 2006, The Compton-Getting effect on ultra-high energy cosmic rays of cosmological origin, Phys. Lett. B, 640, 225, 10.1016/j.physletb.2006.08.006
Globus, 2017, The extragalactic ultra-high energy cosmic-ray dipole, Astrophys. J., 850, L25, 10.3847/2041-8213/aa991b
Globus, 2008, Propagation of high-energy cosmic rays in extragalactic turbulent magnetic fields: resulting energy spectrum and composition, Astron. Astrophys., 479, 97, 10.1051/0004-6361:20078653
Kronberg, 1994, Extragalactic magnetic fields, Rep. Progr. Phys., 57, 325, 10.1088/0034-4885/57/4/001
Blasi, 1999, Cosmological magnetic fields limits in an inhomogeneous universe, Astrophys. J., 514, L79, 10.1086/311958
Pshirkov, 2016, New limits on extragalactic magnetic fields from rotation measures, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.191302
Parizot, 2004, GZK horizon and magnetic fields, Nuclear Phys. Proc. Suppl., 136, 169, 10.1016/j.nuclphysbps.2004.10.034
Huchra, 2012, The 2MASS redshift survey: Description and data release, Astrophys. J. Suppl., 199, 26, 10.1088/0067-0049/199/2/26
Erdogdu, 2006, The dipole anisotropy of the 2 micron all-sky redshift survey, Mon. Not. R. Astron. Soc., 368, 1515, 10.1111/j.1365-2966.2006.10243.x
Harari, 2015, Anisotropies of ultrahigh energy cosmic ray nuclei diffusing from extragalactic sources, Phys. Rev. D, 92, 10.1103/PhysRevD.92.063014
R.W. Clay, [Pierre Auger Collaboration], The anisotropy search program for the Pierre Auger Observatory, astro-ph/0308494.
Ackermann, 2016, 2FHL: The second catalog of hard Fermi-LAT sources, Astrophys. J. Suppl., 222, 5, 10.3847/0067-0049/222/1/5
Ackermann, 2012, GeV observations of star-forming galaxies with Fermi-LAT, Astrophys. J., 755, 164, 10.1088/0004-637X/755/2/164
Tang, 2014, Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146, Astrophys. J., 794, 26, 10.1088/0004-637X/794/1/26
Peng, 2016, First detection of gev emission from an ultraluminous infrared galaxy: Arp 220 as seen with the Fermi Large Area Telescope, Astrophys. J., 821, L20, 10.3847/2041-8205/821/2/L20
Hayashida, 2013, Discovery of GeV emission from the Circinus galaxy with the Fermi Large Area Telescope, Astrophys. J., 779, 131, 10.1088/0004-637X/779/2/131
Acciari, 2009, A connection between star formation activity and cosmic rays in the starburst galaxy M82, Nature, 462, 770, 10.1038/nature08557
H. Abdalla, et al. [H.E.S.S. Collaboration], The starburst galaxy NGC 253 revisited by H.E.S.S. and Fermi-LAT, arXiv:1806.03866 [astro-ph.HE].
Fisher, 1953, Dispersion on a sphere, Proc. Roy. Soc. London Ser. A., 217, 295, 10.1098/rspa.1953.0064
Abreu, 2010, Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter, Astropart. Phys., 34, 314, 10.1016/j.astropartphys.2010.08.010
Harari, 2009, Kolmogorov–Smirnov test as a tool to study the distribution of ultra-high energy cosmic ray sources, Mon. Not. R. Astron. Soc., 394, 916, 10.1111/j.1365-2966.2008.14327.x
J.K. Becker, P.L. Biermann, J. Dreyer, T.M. Kneiske, Cosmic Rays VI: Starburst galaxies at multiwavelengths, arXiv:0901.1775 [astro-ph.HE].
Acero, 2015, Fermi large area telescope third source catalog, Astrophys. J. Suppl., 218, 23, 10.1088/0067-0049/218/2/23
Anchordoqui, 2014, What icecube data tell us about neutrino emission from star-forming galaxies (so far), Phys. Rev. D, 89, 10.1103/PhysRevD.89.127304
Fang, 2014, Is the ultra-high energy cosmic-ray excess observed by the telescope array correlated with icecube neutrinos?, Astrophys. J., 794, 126, 10.1088/0004-637X/794/2/126
He, 2016, Monte Carlo Bayesian search for the plausible source of the Telescope Array hot spot, Phys. Rev. D, 93, 10.1103/PhysRevD.93.043011
Pfeffer, 2017, Ultra high-energy cosmic ray hotspots from tidal disruption events, Mon. Not. R. Astron. Soc., 466, 2922, 10.1093/mnras/stw3337
Attallah, 2018, Ultra-high-energy cosmic rays from nearby starburst galaxies, Mon. Not. R. Astron. Soc., 478, 800, 10.1093/mnras/sty986
Anchordoqui, 2018, Cosmic mass spectrometer, JHEAp, 17, 38
Globus, 2017, Can we reconcile the TA excess and hotspot with Auger observations?, Astrophys. J., 836, 163, 10.3847/1538-4357/836/2/163
Anchordoqui, 2003, Anisotropy at the end of the cosmic ray spectrum?, Phys. Rev. D, 67, 10.1103/PhysRevD.67.123006
Letessier-Selvon, 2011, Ultrahigh energy cosmic rays, Rev. Modern Phys., 83, 907, 10.1103/RevModPhys.83.907
D.S. Gorbunov, P.G. Tinyakov, I.I. Tkachev, S.V. Troitsky, On the interpretation of the cosmic-ray anisotropy at ultra-high energies, arXiv:0804.1088 [astro-ph].
J.H. Matthews, A.R. Bell, K.M. Blundell, A.T. Araudo, Fornax A, Centaurus A and other radio galaxies as sources of ultra-high energy cosmic rays, http://dx.doi.org/10.1093/mnrasl/sly099, arXiv:1805.01902 [astro-ph.HE].
Smida, 2016, The ultra-high-energy cosmic rays image of Virgo A, PoS ICRC, 2015, 470
Anjos, 2018, Ultrahigh-energy cosmic ray composition from the distribution of arrival directions, Phys. Rev. D, 98
Abbasi, 2018, Testing a reported correlation between arrival directions of ultra-high-energy cosmic rays and a flux pattern from nearby starburst galaxies using Telescope Array data, Astrophys, J., 867, L27, 10.3847/2041-8213/aaebf9
J. Biteau, et al. [Telescope Array and Pierre Auger Collaborations], Covering the sphere at ultra-high energies: full-sky cosmic-ray maps beyond the ankle and the flux suppression, in: Proceedings of Ultra High Energy Cosmic Rays 2018, 8–12 October 2018, Paris, to be published.
Abu-Zayyad, 2013, The cosmic ray energy spectrum observed with the surface detector of the Telescope Array experiment, Astrophys. J., 768, L1, 10.1088/2041-8205/768/1/L1
Lemoine, 2009, Anisotropy vs chemical composition at ultra-high energies, J. Cosmol. Astropart. Phys., 0911, 009, 10.1088/1475-7516/2009/11/009
Liu, 2013, Constraints on the source of ultra-high-energy cosmic rays using anisotropy versus chemical composition, Astrophys. J., 776, 88, 10.1088/0004-637X/776/2/88
A. Aab, et al. [Pierre Auger Collaboration], The Pierre Auger Observatory upgrade: Preliminary design report, arXiv:1604.03637 [astro-ph.IM].
Aab, 2016, Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.241101
A. Aab, et al. [Pierre Auger Collaboration], Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory, arXiv:1806.05386 [astro-ph.IM].
Kido, 2017, The TA×4 experiment, PoS ICRC, 2017, 386
Hillas, 1984, The origin of ultrahigh-energy cosmic rays, Ann. Rev. Astron. Astrophys., 22, 425, 10.1146/annurev.aa.22.090184.002233
Swann, 1933, A mechanism of acquirement of cosmic ray energies by electrons, Phys. Rev., 43, 217, 10.1103/PhysRev.43.217
de Jager, 1994, Evidence for particle acceleration in a magnetized white dwarf from radio and gamma-ray observations, Astrophys. J. Suppl., 90, 775, 10.1086/191902
Ikhsanov, 2006, High-energy emission of fast rotating white dwarfs, Astron. Astrophys., 445, 305, 10.1051/0004-6361:20053179
Gunn, 1969, Acceleration of high-energy cosmic rays by pulsars, Phys. Rev. Lett., 22, 728, 10.1103/PhysRevLett.22.728
Blasi, 2000, Ultrahigh-energy cosmic rays from young neutron star winds, Astrophys. J., 533, L123, 10.1086/312626
Arons, 2003, Magnetars in the metagalaxy: an origin for ultrahigh-energy cosmic rays in the nearby universe, Astrophys. J., 589, 871, 10.1086/374776
Fang, 2012, Newly-born pulsars as sources of ultrahigh energy cosmic rays, Astrophys. J., 750, 118, 10.1088/0004-637X/750/2/118
Fang, 2013, Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts, J. Cosmol. Astropart. Phys., 1303, 010, 10.1088/1475-7516/2013/03/010
Blandford, 1977, Electromagnetic extractions of energy from Kerr black holes, Mon. Not. R. Astron. Soc., 179, 433, 10.1093/mnras/179.3.433
Znajek, 1978, The electric and magnetic conductivity of a Kerr hole, Mon. Not. R. Astron. Soc., 185, 833, 10.1093/mnras/185.4.833
Lovelace, 1976, Dynamo model of double radio sources, Nature, 262, 649, 10.1038/262649a0
Fermi, 1949, On the origin of the cosmic radiation, Phys. Rev., 75, 1169, 10.1103/PhysRev.75.1169
Fermi, 1954, Galactic magnetic fields and the origin of cosmic radiation, Astrophys. J., 119, 1, 10.1086/145789
Jokipii, 1971, Propagation of cosmic rays in the solar wind, Rev. Geophys., 9, 27, 10.1029/RG009i001p00027
Wenzel, 1989, Charged particle acceleration processes in the interplanetary medium, Adv. Space Res., 9, 179, 10.1016/0273-1177(89)90112-9
Scott, 1975, Cosmic-ray production in the Cassiopeia A supernova remnant, Astrophys. J., 197, L5, 10.1086/181763
Chevalier, 1979, Cosmic ray acceleration and the radio evolution of Cassiopeia A, Astrophys. J., 207, 450, 10.1086/154514
Chevalier, 1978, Further studies of particle acceleration in Cassiopeia A, Astrophys. J., 222, 527, 10.1086/156165
Cowsik, 1984, The evolution of supernova remnants as radio sources, Mon. Not. R. Astron. Soc., 207, 745, 10.1093/mnras/207.4.745
Torres, 2003, Supernova remnants and gamma-ray sources, Phys. Rep., 382, 303, 10.1016/S0370-1573(03)00201-1
P. Blasi, Cosmic ray acceleration in supernova remnants, http://dx.doi.org/10.1142/9789814329033_0061, arXiv:1012.5005 [astro-ph.HE].
Jokipii, 1985, On the origin of high-energy cosmic rays, Astrophys. J., 290, L1, 10.1086/184430
Jokipii, 1987, Ultra-high-energy cosmic rays in a galactic wind and its termination shock, Astrophys. J., 312, 170, 10.1086/164857
Bustard, 2017, Cosmic ray acceleration by a versatile family of galactic wind termination shocks, Astrophys. J., 835, 72, 10.3847/1538-4357/835/1/72
Merten, 2018, The propagation of cosmic rays from the galactic wind termination shock: Back to the Galaxy?, Astrophys. J., 859, 63, 10.3847/1538-4357/aabfdd
Protheroe, 1983, On the origin of relativistic particles and gamma-rays in quasars, Astrophys. J., 265, 620, 10.1086/160707
Kazanas, 1986, The central engine of quasars and AGNs: hadronic interactions of shock accelerated relativistic protons, Astrophys. J., 304, 178, 10.1086/164152
Protheroe, 1992, High-energy cosmic rays from active galactic nuclei, Phys. Rev. Lett., 69, 2885, 10.1103/PhysRevLett.69.2885
Biermann, 1987, Synchrotron emission from shock waves in active galactic nuclei, Astrophys. J., 322, 643, 10.1086/165759
Rachen, 1993, Extragalactic ultrahigh-energy cosmic rays I: Contribution from hot spots in FR-II radio galaxies, Astron. Astrophys., 272, 161
Romero, 1996, A possible source of extragalactic cosmic rays with arrival energies beyond the GZK cutoff, Astropart. Phys., 5, 279, 10.1016/0927-6505(96)00029-1
Blandford, 1979, Relativistic jets as compact radio sources, Astrophys. J., 232, 34, 10.1086/157262
Mannheim, 1993, The proton blazar, Astron. Astrophys., 269, 67
Dermer, 2009, Ultrahigh energy cosmic rays from black hole jets of radio galaxies, New J. Phys., 11, 10.1088/1367-2630/11/6/065016
Caprioli, 2015, Espresso acceleration of ultra-high-energy cosmic rays, Astrophys. J., 811, L38, 10.1088/2041-8205/811/2/L38
Waxman, 1995, Cosmological gamma-ray bursts and the highest energy cosmic rays, Phys. Rev. Lett., 75, 386, 10.1103/PhysRevLett.75.386
Vietri, 1995, On the acceleration of ultrahigh-energy cosmic rays in gamma-ray bursts, Astrophys. J., 453, 883, 10.1086/176448
Anchordoqui, 2018, Acceleration of ultrahigh-energy cosmic rays in starburst superwinds, Phys. Rev. D, 97, 10.1103/PhysRevD.97.063010
Levinson, 2001, Probing microquasars with TeV neutrinos, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.171101
Aharonian, 2006, Microquasar LS 5039: a TeV gamma-ray emitter and a potential TeV neutrino source, J. Phys. Conf. Ser., 39, 408, 10.1088/1742-6596/39/1/106
Norman, 1995, The origin of cosmic rays above 1018.5 eV, Astrophys. J., 454, 60, 10.1086/176465
Kang, 1997, Contributions to the cosmic ray flux above the ankle: clusters of galaxies, Mon. Not. R. Astron. Soc., 286, 257, 10.1093/mnras/286.2.257
Ryu, 2003, Cosmological shock waves and their role in the large scale structure of the universe, Astrophys. J., 593, 599, 10.1086/376723
M. Ahlers, L.A. Anchordoqui, J.K. Becker, T.K. Gaisser, F. Halzen, D. Hooper, S.R. Klein. P. Mészáros, S. Razzaque, S. Sarkar, Neutrinos on the rocks: The IceCube yellow bookFERMILAB-FN-0847-A, YITP-SB-10-01.
Ptitsyna, 2010, Physical conditions in potential sources of ultra-high-energy cosmic rays I: Updated Hillas plot and radiation-loss constraints, Phys.-Usp., 53, 691, 10.3367/UFNe.0180.201007c.0723
Chamel, 2008, Physics of neutron star crusts, Living Rev. Rel., 11, 10, 10.12942/lrr-2008-10
Ruderman, 1975, Theory of pulsars: Polar caps, sparks, and coherent microwave radiation, Astrophys. J., 196, 51, 10.1086/153393
D. Viganó, Magnetic fields in neutron stars, arXiv:1310.1243 [astro-ph.HE].
Goldreich, 1969, Pulsar electrodynamics, Astrophys. J., 157, 869, 10.1086/150119
V.S. Berezinsky, Acceleration to ultra high energies in magnetospheres of young pulsars, in: Proceedings of the 18th International Cosmic Ray Conference, vol. 2, 1983, p. 275.
Faucher-Giguere, 2006, Birth and evolution of isolated radio pulsars, Astrophys. J., 643, 332, 10.1086/501516
Haensel, 1999, On the minimum period of uniformly rotating meutron stars, Astron. Astrophys., 344, 151
Ochelkov, 1980, Curvature radiation of relativistic particles in the magnetosphere of pulsars, Astrophys. Space Sci., 69, 439, 10.1007/BF00661929
Kotera, 2015, The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars, J. Cosmol. Astropart. Phys., 1508, 026, 10.1088/1475-7516/2015/08/026
Spitkovsky, 2006, Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators, Astrophys. J., 648, L51, 10.1086/507518
Boldt, 1999, Cosmic rays from remnants of quasars?, Mon. Not. R. Astron. Soc., 307, 491, 10.1046/j.1365-8711.1999.02600.x
Boldt, 2000, Cosmic ray generation by quasar remnants: Constraints and implications, Mon. Not. R. Astron. Soc., 316, L29, 10.1046/j.1365-8711.2000.03768.x
Neronov, 2009, Ultra-high energy cosmic ray production in the polar cap regions of black hole magnetospheres, New J. Phys., 11, 10.1088/1367-2630/11/6/065015
Moncada, 2017, Ultrahigh energy cosmic ray nuclei from remnants of dead quasars, JHEAp, 13–14, 32
Drury, 1994, Acceleration of cosmic rays, Contemp. Phys., 35, 231, 10.1080/00107519408222090
Krymskii, 1977, A regular mechanism for the acceleration of charged particles on the front of a shock wave, Akad. Nauk SSSR Dokl., 234, 1306
W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in: Proceedings of the 15th International Cosmic Ray Conference, vol. 11, 1977, p. 132.
Bell, 1978, The acceleration of cosmic rays in shock fronts I, Mon. Not. R. Astron. Soc., 182, 147, 10.1093/mnras/182.2.147
Bell, 1978, The acceleration of cosmic rays in shock fronts II, Mon. Not. R. Astron. Soc., 182, 443, 10.1093/mnras/182.3.443
Blandford, 1978, Particle acceleration by astrophysical shocks, Astrophys. J., 221, L29, 10.1086/182658
Lagage, 1983, The maximum energy of cosmic rays accelerated by supernova shocks, Astron. Astrophys., 125, 249
Drury, 1983, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas, Rep. Progr. Phys., 46, 973, 10.1088/0034-4885/46/8/002
Blandford, 1987, Particle acceleration at astrophysical shocks: A theory of cosmic ray origin, Phys. Rep., 154, 1, 10.1016/0370-1573(87)90134-7
R.J. Protheroe, Acceleration and interaction of ultrahigh-energy cosmic rays, arXiv:astro-ph/9812055.
Bell, 2013, Cosmic ray acceleration, Astropart. Phys., 43, 56, 10.1016/j.astropartphys.2012.05.022
Baerwald, 2013, UHECR escape mechanisms for protons and neutrons from GRBs, and the cosmic ray-neutrino connection, Astrophys. J., 768, 186, 10.1088/0004-637X/768/2/186
Gaisser, 1990
G.E. Romero, A.L. Müller, M. Roth, Particle acceleration in the superwinds of starburst galaxies, arXiv:1801.06483 [astro-ph.HE].
Jokipii, 1987, Rate of energy gain and maximum energy in diffusive shock acceleration, Astrophys. J., 313, 842, 10.1086/165022
Ferrand, 2014, Cosmic ray acceleration at perpendicular shocks in supernova remnants, Astrophys. J., 792, 133, 10.1088/0004-637X/792/2/133
Waxman, 2005, Extra-galactic sources of high energy neutrinos, Phys. Scr. T, 121, 147, 10.1088/0031-8949/2005/T121/022
Anchordoqui, 2008, High-energy neutrinos from astrophysical accelerators of cosmic ray nuclei, Astropart. Phys., 29, 1, 10.1016/j.astropartphys.2007.10.006
Wang, 2008, On the origin and survival of UHE cosmic-ray nuclei in GRBs and hypernovae, Astrophys. J., 677, 432, 10.1086/529018
Murase, 2008, High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray bursts and implications for multi-messenger astronomy, Phys. Rev. D, 78, 10.1103/PhysRevD.78.023005
Globus, 2015, UHECR acceleration at GRB internal shocks, Mon. Not. R. Astron. Soc., 451, 751, 10.1093/mnras/stv893
Biehl, 2018, Cosmic-ray and neutrino emission from gamma-ray bursts with a nuclear cascade, Astron. Astrophys., 611, A101, 10.1051/0004-6361/201731337
Zhang, 2018, Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei, Phys. Rev. D, 97, 10.1103/PhysRevD.97.083010
T. Piran, A new limit on the distances of nuclei UHECRs sources, arXiv:1005.3311 [astro-ph.HE].
H.C. Spruit, Essential magnetohydrodynamics for astrophysics, arXiv:1301.5572 [astro-ph.IM].
Blandford, 2000, Acceleration of ultrahigh-energy cosmic rays, Phys. Scr. T, 85, 191, 10.1238/Physica.Topical.085a00191
Dermer, 2010, Acceleration of ultra-high energy cosmic rays in the colliding shells of blazars and GRBs: Constraints from the Fermi Gamma ray Space Telescope, Astrophys. J., 724, 1366, 10.1088/0004-637X/724/2/1366
Cannoni, 2017, Lorentz invariant relative velocity and relativistic binary collisions, Internat. J. Modern Phys. A, 32, 10.1142/S0217751X17300022
Stecker, 1968, Effect of photomeson production by the universal radiation field on high-energy cosmic rays, Phys. Rev. Lett., 21, 1016, 10.1103/PhysRevLett.21.1016
Berezinsky, 1987, The hump in the ultrahigh-energy cosmic ray spectrum, Sov. Phys.—JETP, 66, 457
Berezinsky, 1988, A bump in the ultrahigh-energy cosmic ray spectrum, Astron. Astrophys., 199, 1
Fixsen, 2009, The temperature of the cosmic microwave background, Astrophys. J., 707, 916, 10.1088/0004-637X/707/2/916
Blumenthal, 1970, Energy loss of high-energy cosmic rays in pair-producing collisions with ambient photons, Phys. Rev. D, 1, 1596, 10.1103/PhysRevD.1.1596
Aharonian, 1994, Influence of the universal microwave background radiation on the extragalactic cosmic ray spectrum, Phys. Rev. D, 50, 1892, 10.1103/PhysRevD.50.1892
Armstrong, 1972, Total hadronic cross-section of gamma rays in hydrogen in the energy range 0.265 GeV to 4.215 GeV, Phys. Rev. D, 5, 1640, 10.1103/PhysRevD.5.1640
Montanet, 1994, Review of particle properties, Phys. Rev. D, 50, 1173, 10.1103/PhysRevD.50.1173
Golyak, 1992, A connection of inelasticity with multiplicity distribution at high-energies, Modern Phys. Lett. A, 7, 2401, 10.1142/S0217732392003839
Anchordoqui, 1998
Anchordoqui, 1997, Opacity of the microwave background radiation to ultra-high-energy cosmic rays, Nuclear Phys. Proc. Suppl., 52, B249, 10.1016/S0920-5632(96)00898-5
Anchordoqui, 1997, Effect of the 3-k background radiation on ultrahigh-energy cosmic rays, Phys. Rev. D, 55, 7356, 10.1103/PhysRevD.55.7356
Abramowitz, 1970
Chodorowski, 1992, Reaction rate and energy-loss rate for photopair production by relativistic nuclei, Astrophys. J., 400, 181, 10.1086/171984
Michalowski, 1977, Experimental study of nuclear shadowing in photoproduction, Phys. Rev. Lett., 39, 737, 10.1103/PhysRevLett.39.737
Hayward, 1963, Photodisintegration of light nuclei, Rev. Modern Phys., 35, 324, 10.1103/RevModPhys.35.324
Danos, 1965, Photonuclear reactions, Ann. Rev. Nucl. Part. Sci., 15, 29, 10.1146/annurev.ns.15.120165.000333
Stecker, 1999, Photodisintegration of ultrahigh-energy cosmic rays: A new determination, Astrophys. J., 512, 521, 10.1086/306816
Khan, 2005, Photodisintegration of ultra-high-energy cosmic rays revisited, Astropart. Phys., 23, 191, 10.1016/j.astropartphys.2004.12.007
Boncioli, 2017, Nuclear physics meets the sources of the ultra-high-energy cosmic rays, Sci. Rep., 7, 4882, 10.1038/s41598-017-05120-7
Karakula, 1993, The formation of the cosmic ray energy spectrum by a photon field, Astropart. Phys., 1, 229, 10.1016/0927-6505(93)90023-7
Anchordoqui, 2007, TeV γ− rays and neutrinos from photo-disintegration of nuclei in Cygnus OB2, Phys. Rev. D, 75, 10.1103/PhysRevD.75.063001
Soriano, 2018, Photodisintegration of 4he on the cosmic microwave background is less severe than earlier thought, Phys. Rev. D, 98, 10.1103/PhysRevD.98.043001
Anchordoqui, 2007, TeV gamma-rays from photo-disintegration/de-excitation of cosmic-ray nuclei, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.121101
Alves Batista, 2015, Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp, J. Cosmol. Astropart. Phys., 1510, 063
Gilmore, 2012, Semi-analytic modeling of the EBL and consequences for extragalactic gamma-ray spectra, Mon. Not. R. Astron. Soc., 422, 3189, 10.1111/j.1365-2966.2012.20841.x
Epele, 1998, On the propagation of the highest energy cosmic ray nuclei, J. High Energy Phys., 9810, 009, 10.1088/1126-6708/1998/10/009
Hill, 1985, The ultrahigh-energy cosmic ray spectrum, Phys. Rev. D, 31, 564, 10.1103/PhysRevD.31.564
Stecker, 1989, Extragalactic radiation and the ultrahigh-energy cosmic ray spectrum, Nature, 342, 401, 10.1038/342401a0
Anchordoqui, 1998, A depression before the bump in the highest energy cosmic ray spectrum, Phys. Rev. D, 57, 7103, 10.1103/PhysRevD.57.7103
Allard, 2008, Implications of the cosmic ray spectrum for the mass composition at the highest energies, J. Cosmol. Astropart. Phys., 0810, 033, 10.1088/1475-7516/2008/10/033
Allard, 2012, Extragalactic propagation of ultrahigh energy cosmic-rays, Astropart. Phys., 39–40, 33, 10.1016/j.astropartphys.2011.10.011
Kotera, 2011, The astrophysics of ultrahigh energy cosmic rays, Ann. Rev. Astron. Astrophys., 49, 119, 10.1146/annurev-astro-081710-102620
Waxman, 1996, Images of bursting sources of high-energy cosmic rays I: Effects of magnetic fields, Astrophys. J., 472, L89, 10.1086/310367
Farrar, 2013, Galactic magnetic deflections and Centaurus A as a UHECR source, J. Cosmol. Astropart. Phys., 1301, 023, 10.1088/1475-7516/2013/01/023
G.R. Farrar, M.S. Sutherland, Deflections of UHECRs in the Galactic magnetic field, arXiv:1711.02730 [astro-ph.HE].
Fannaroff, 1974, The morphology of extragalactic radio sources of high and low luminosity, Mon. Not. R. Astron. Soc., 167, 31, 10.1093/mnras/167.1.31P
Blandford, 1974, A ‘twin-exhaust’ model for double radio sources, Mon. Not. R. Astron. Soc., 169, 395, 10.1093/mnras/169.3.395
Rosen, 1999, A comparison of the morphology and stability of relativistic and nonrelativistic jets, Astrophys. J., 516, 729, 10.1086/307143
Begelman, 1984, Theory of extragalactic radio sources, Rev. Modern Phys., 56, 255, 10.1103/RevModPhys.56.255
Kolmogorov, 1941, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. Acad. Sci. URSS, 30, 201
Anchordoqui, 2001, An Auger test of the Cen A model of highest energy cosmic rays, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.081101
Anchordoqui, 2011, Update on tests of the Cen A neutron-emission model of highest energy cosmic rays, Phys. Rev. D, 84, 10.1103/PhysRevD.84.067301
Anchordoqui, 2002, A lower bound on the local extragalactic magnetic field, Phys. Rev. D, 65
Israel, 1998, Centaurus A (NGC 5128), Astron. Astrophys. Rev., 8, 237, 10.1007/s001590050011
Hardcastle, 2003, Radio and X-ray observations of the jet in Centaurus A, Astrophys. J., 593, 169, 10.1086/376519
Burns, 1983, The inner radio structure of Centaurus A: clues to the origin of the jet X-ray emission, Astrophys. J., 273, 128, 10.1086/161353
Sreekumar, 1999, Gev emission from the nearby radio galaxy Centaurus A, Astropart. Phys., 11, 221, 10.1016/S0927-6505(99)00054-7
Grindlay, 1975, Evidence for the detection of gamma rays from Centaurus A at Eγ≥3×1011 eV, Astrophys. J., 197, L9, 10.1086/181764
Abdo, 2009, Fermi large area telescope bright gamma-ray source list, Astrophys. J. Suppl., 183, 46, 10.1088/0067-0049/183/1/46
Abdo, 2009, Bright AGN source list from the first three months of the Fermi Large Area Telescope all-sky survey, Astrophys. J., 700, 597, 10.1088/0004-637X/700/1/597
Aharonian, 2009, Discovery of very high energy gamma-ray emission from Centaurus A with H.E.S.S., Astrophys. J., 695, L40, 10.1088/0004-637X/695/1/L40
Abdo, 2010, Fermi large area telescope view of the core of the radio galaxy Centaurus A, Astrophys. J., 719, 1433, 10.1088/0004-637X/719/2/1433
Abdo, 2010, Fermi gamma-ray imaging of a radio galaxy, Science, 328, 725, 10.1126/science.1184656
H. Abdalla, et al. [H. E. S. S. and Fermi-LAT Collaborations], The γ-ray spectrum of the core of Centaurus A as observed with H.E.S.S. and Fermi-LAT, arXiv:1807.07375 [astro-ph.HE].
Honda, 2009, Ultra-high energy cosmic-ray acceleration in the jet of Centaurus A, Astrophys. J., 706, 1517, 10.1088/0004-637X/706/2/1517
Junkes, 1993, Radio polarization surveys of Centaurus A (NGC 5128) I: The complete radio source at 6.3 cm, Astron. Astrophys., 269, 29
Junkes, 1993, Radio polarization surveys of Centaurus A (NGC 5128) I: The complete radio source at 6.3 cm, Astron. Astrophys., 274, 1009
Rieger, 2004, Shear acceleration in relativistic astrophysical jets, Astrophys. J., 617, 155, 10.1086/425167
Rieger, 2009, Cen A as TeV gamma-ray and possible UHE cosmic-ray source, Astron. Astrophys., 506, L41, 10.1051/0004-6361/200912562
Wykes, 2013, Mass entrainment and turbulence-driven acceleration of ultra-high energy cosmic rays in Centaurus A, Astron. Astrophys., 558, A19, 10.1051/0004-6361/201321622
Eilek, 2014, The dynamic age of Centaurus A, New J. Phys., 16, 10.1088/1367-2630/16/4/045001
Farrar, 2009, Giant AGN flares and cosmic ray bursts, Astrophys. J., 693, 329, 10.1088/0004-637X/693/1/329
G.R. Farrar, T. Piran, Tidal disruption jets as the source of ultra-high energy cosmic rays, arXiv:1411.0704 [astro-ph.HE].
Alves Batista, 2017, Ultrahigh-energy cosmic rays from tidally-ignited white dwarfs, Phys. Rev. D, 96
Zhang, 2017, High-energy cosmic ray nuclei from tidal disruption events: origin, survival, and implications, Phys. Rev. D, 96
Biehl, 2018, Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies, Sci. Rep., 8, 10828, 10.1038/s41598-018-29022-4
T.M. Heckman, T.A. Thompson, A brief review of galactic winds, arXiv:1701.09062.
Veilleux, 2005, Galactic winds, Ann. Rev. Astron. Astrophys., 43, 769, 10.1146/annurev.astro.43.072103.150610
Long, 2014, A deep Chandra ACIS survey of M83, Astrophys. J. Suppl., 212, 21, 10.1088/0067-0049/212/2/21
MacFadyen, 1999, Collapsars: Gamma-ray bursts and explosions in failed supernovae, Astrophys. J., 524, 262, 10.1086/307790
J. Dreyer, J.K. Becker, W. Rhode, The starburst-GRB connection, arXiv:0909.0158 [astro-ph.HE].
P.L. Biermann, et al. The nature and origin of ultrahigh-energy cosmic ray particles, arXiv:1610.00944 [astro-ph.HE].
Chary, 2002, Are starburst galaxies the hosts of gamma-ray bursts?, Astrophys. J., 566, 229, 10.1086/337964
Stanek, 2006, Protecting life in the milky way: metals keep the GRBs away, Acta Astron., 56, 333
Modjaz, 2008, Measured metallicities at the sites of nearby broad-lined type Ic supernovae and implications for the SN-GRB connection, Astron. J., 135, 1136, 10.1088/0004-6256/135/4/1136
Jimenez, 2013, Reconciling the gamma-ray burst rate and star formation histories, Astrophys. J., 773, 126, 10.1088/0004-637X/773/2/126
Wang, 2007, High-energy cosmic rays and neutrinos from semi-relativistic hypernovae, Phys. Rev. D, 76, 10.1103/PhysRevD.76.083009
Ptuskin, 2010, Spectrum of galactic cosmic rays accelerated in supernova remnants, Astrophys. J., 718, 31, 10.1088/0004-637X/718/1/31
Chevalier, 1985, Wind from a starburst galaxy nucleus, Nature, 317, 44, 10.1038/317044a0
Lacki, 2014, The fermi bubbles as starburst wind termination shocks, Mon. Not. R. Astron. Soc., 444, L39, 10.1093/mnrasl/slu107
Kroupa, 2002, The initial mass function of stars: Evidence for uniformity in variable systems, Science, 295, 82, 10.1126/science.1067524
Strickland, 2009, Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82, Astrophys. J., 697, 2030, 10.1088/0004-637X/697/2/2030
Heckman, 2000, Absorption-line probes of gas and dust in galactic superwinds, Astrophys. J. Suppl., 129, 493, 10.1086/313421
Hoopes, 2007, The diverse properties of the most ultraviolet luminous galaxies discovered by the galaxy evolution explorer, Astrophys. J. Suppl., 173, 441, 10.1086/516644
Beirão, 2015, Spatially resolved Spitzer-IRS spectral maps of the superwind in M82, Mon. Not. R. Astron. Soc., 451, 2640, 10.1093/mnras/stv1101
Contursi, 2013, Spectroscopic FIR mapping of the disk and galactic wind of M82 with Herschel-PACS, Astron. Astrophys., 549, A118, 10.1051/0004-6361/201219214
Heckman, 1990, On the nature and implications of starburst-driven galactic superwinds, Astrophys. J. Suppl., 74, 833, 10.1086/191522
Veilleux, 2009, Warm molecular hydrogen in the galactic wind of M82, Astrophys. J., 700, L149, 10.1088/0004-637X/700/2/L149
Leroy, 2015, Themulti-phase cold fountain in M82 revealed by a wide, sensitive map of the molecular interstellar medium, Astrophys. J., 814, 83, 10.1088/0004-637X/814/2/83
Bolatto, 2013, The starburst-driven molecular wind in NGC 253 and the suppression of star formation, Nature, 499, 450, 10.1038/nature12351
Lacki, 2013, From 10K to 10 TK: Insights on the interaction between cosmic rays and gas in starbursts, Astrophys. Space Sci. Proc., 34, 411, 10.1007/978-3-642-35410-6_29
Shukurov, 2004, The effects of spiral arms on the multi-phase ISM, Astrophys. Space Sci., 289, 319, 10.1023/B:ASTR.0000014960.35780.2e
Adebahr, 2013, M82 - A radio continuum and polarisation study I: Data reduction and cosmic ray propagation Astron, Astrophys., 555, A23
Beck, 1994, Multifrequency observations of the radio continuum emission from NGC 253 I: Magnetic fields and rotation measures in the bar and halo, Astron. Astrophys., 292, 409
Heesen, 2009, Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 I: The distribution and transport of cosmic rays, Astron. Astrophys., 494, 563, 10.1051/0004-6361:200810543
Heesen, 2009, Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 II: The magnetic field structure, Astron. Astrophys., 506, 1123, 10.1051/0004-6361/200911698
Heesen, 2011, Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 III: Helical magnetic fields in the nuclear outflow, Astron. Astrophys., 535, A79, 10.1051/0004-6361/201117618
M. Krause, Magnetic fields and halos in spiral galaxies, arXiv:1401.1317 [astro-ph.GA].
Thompson, 2006, Magnetic fields in starburst galaxies and the origin of the fir-radio correlation, Astrophys. J., 645, 186, 10.1086/504035
Paglione, 2012, Properties of nearby starburst galaxies based on their diffuse gamma-ray emission, Astrophys. J., 755, 106, 10.1088/0004-637X/755/2/106
Lacki, 2013, The equipartition magnetic field formula in starburst galaxies: Accounting for pionic secondaries and strong energy losses, Mon. Not. R. Astron. Soc., 430, 3171, 10.1093/mnras/stt122
Domingo-Santamaria, 2005, High energy gamma-ray emission from the starburst nucleus of NGC 253, Astron. Astrophys., 444, 403, 10.1051/0004-6361:20053613
de Cea del Pozo, 2009, Multi-messenger model for the starburst galaxy M82, Astrophys. J., 698, 1054, 10.1088/0004-637X/698/2/1054
B.C. Lacki, Sturm und drang: Supernova-driven turbulence, magnetic fields, and cosmic rays in the chaotic starburst interstellar medium, arXiv:1308.5232 [astro-ph.CO].
Thornley, 2000, Massive star formation and evolution in starburst galaxies: mid-infrared spectroscopy with ISO-SWS, Astrophys. J., 539, 641, 10.1086/309261
Torres, 2004, Theoretical modelling of the diffuse emission of gamma-rays from extreme regions of star formation: The Case of Arp 220, Astrophys. J., 617, 966, 10.1086/425415
Torres, 2012, Building up the spectrum of cosmic-rays in star-forming regions, Mon. Not. R. Astron. Soc., 423, 822, 10.1111/j.1365-2966.2012.20920.x
Meurer, 2000, Star clusters and the duration of starbursts, ASP Conf. Ser., 211, 81
McQuinn, 2009, The true durations of starbursts: hst observations of three nearby dwarf starburst galaxies, Astrophys. J., 695, 561, 10.1088/0004-637X/695/1/561
McQuinn, 2010, The nature of starbursts II: The duration of starbursts in dwarf galaxies, Astrophys. J., 724, 49, 10.1088/0004-637X/724/1/49
de Grijs, 2001, Star formation time-scales in the nearby, prototype starburst galaxy M82, Astron. Geophys., 42, 14
de Grijs, 2003, Star cluster formation and disruption time-scales II: Evolution of the star cluster system in M82’s fossil starburst, Mon. Not. R. Astron. Soc., 340, 197, 10.1046/j.1365-8711.2003.06283.x
Davidge, 2010, Shaken, not stirred: The disrupted disk of the starburst galaxy NGC 253, Astrophys. J., 725, 1342, 10.1088/0004-637X/725/1/1342
Davidge, 2016, The compact star-forming complex at the heart of NGC 253, Astrophys. J., 818, 142, 10.3847/0004-637X/818/2/142
Rieke, 1980, The nature of the nuclear sources in M82 and NGC 253, Astrophys. J., 238, 24, 10.1086/157954
Vink, 2003, On the magnetic fields and particle acceleration in cas a, Astrophys. J., 584, 758, 10.1086/345832
Yamazaki, 2004, Constraints on the diffusive shock acceleration from the nonthermal X-ray thin shells in SN1006 NE rim, Astron. Astrophys., 416, 595, 10.1051/0004-6361:20034212
Volk, 2005, Magnetic field amplification in tycho and other shell-type supernova remnants, Astron. Astrophys., 433, 229, 10.1051/0004-6361:20042015
Lucek, 2000, Non-linear amplification of a magnetic field driven by cosmic ray streaming, Mon. Not. R. Astron. Soc., 314, 65, 10.1046/j.1365-8711.2000.03363.x
Bell, 2004, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays, Mon. Not. R. Astron. Soc., 353, 550, 10.1111/j.1365-2966.2004.08097.x
Bell, 2005, The interaction of cosmic rays and magnetized plasma, Mon. Not. R. Astron. Soc., 358, 181, 10.1111/j.1365-2966.2005.08774.x
Matthews, 2017, Amplification of perpendicular and parallel magnetic fields by cosmic ray currents, Mon. Not. R. Astron. Soc., 469, 1849, 10.1093/mnras/stx905
Lípari, 1997, Macchetto luminous ifrared galaxies II – NGC 4945: A nearby obscured starburst/seyfert nucleus, Astrophys. J. Suppl., 111, 369, 10.1086/313019
Marconi, 2000, The elusive active nucleus of NGC 4945, Astron. Astrophys., 357, 24
Levenson, 2002, Extreme X-ray iron lines in active galactic nuclei, Astrophys. J., 573, L81, 10.1086/342092
Strickland, 2004, A high spatial resolution X-ray and H-alpha study of hot gas in the halos of star-forming disk galaxies I: Spatial and spectral properties of the diffuse X-ray emission, Astrophys. J. Suppl., 151, 193, 10.1086/382214
Levenson, 2001, The seyfert-starburst connection in X-rays I: the data, Astrophys. J. Suppl., 133, 269, 10.1086/320355
Levenson, 2001, The seyfert-starburst connection in X-rays 2: Results and implications, Astrophys. J., 550, 230, 10.1086/319726
Levenson, 2004, Accretion and outflow in the AGN and starburst of NGC 5135, Astrophys. J., 602, 135, 10.1086/380836
Strickland, 2004, Winds from nuclear starbursts: old truths and recent progress on superwinds, IAU Symp., 222, 249, 10.1017/S1743921304002194
Colbert, 1996, Large scale outflows in edge-on seyfert galaxies I: optical emission- line imaging and optical spectroscopy, Astrophys. J. Suppl., 105, 75, 10.1086/192307
Colbert, 1998, Large scale outflows in edge-on seyfert galaxies III: Kiloparsec-scale soft X-ray emission, Astrophys. J., 496, 786, 10.1086/305417
Krolik, 1986, An X-ray heated wind in NGC 1068, Astrophys. J., 308, L55, 10.1086/184743
Soria, 2002, X-ray sources in the starburst spiral galaxy M83: nuclear region and discrete source population, Astron. Astrophys., 384, 99, 10.1051/0004-6361:20020026
Vogler, 2005, Dissecting the spiral galaxy M83: Mid-infrared emission and comparison with other tracers of star formation, Astron. Astrophys., 441, 491, 10.1051/0004-6361:20042342
Veilleux, 1997, Artillery shells over Circinus, Astrophys. J., 479, L105, 10.1086/310588
Elmouttie, 1998, The kinematics of the ionized gas in the Circinus galaxy, Mon. Not. R. Astron. Soc., 297, 49, 10.1046/j.1365-8711.1998.01402.x
Luppino, 1993, Tonry infrared surface brightness fluctuations: K′-band observations of M32, M32, and Maffei 1, Astrophys. J., 410, 81, 10.1086/172726
Krismer, 1995, IC 342/Maffei group of galaxies and distances for two of its members, Astron. J., 110, 1584, 10.1086/117632
Buta, 1999, The IC 342/Maffei group revealed, Astrophys. J. Suppl., 124, 33, 10.1086/313255
Tikhonov, 2010, Distance to the galaxy IC 342, Astron. Lett., 36, 167, 10.1134/S1063773710030023
Schinnerer, 2008, Self-regulated fueling of galaxy centers: Evidence for star-formation feedback in IC342’s nucleus, Astrophys. J., 684, L21, 10.1086/592109
Bregman, 1993, X-ray emission from the starburst galaxy IC 342, Astrophys. J., 415, L79, 10.1086/187037
Taylor, 2011, The need for a local source of UHE CR nuclei, Phys. Rev. D, 84, 10.1103/PhysRevD.84.105007
Ahlers, 2013, Ensemble fluctuations of the flux and nuclear composition of ultrahigh energy cosmic ray nuclei, Phys. Rev. D, 87, 10.1103/PhysRevD.87.023004
L.A. Anchordoqui, M. Ahlers, A.V. Olinto, T.C. Paul, A.M. Taylor, Sensitivity of JEM-EUSO to ensemble fluctuations in the ultra-high energy cosmic ray flux, arXiv:1306.0910 [astro-ph.CO].
Hooper, 2008, The intergalactic propagation of ultra-high energy cosmic ray nuclei: an analytic approach, Phys. Rev. D, 77, 10.1103/PhysRevD.77.103007
Ahlers, 2010, Analytic solutions of ultra-high energy cosmic ray nuclei revisited, Phys. Rev. D, 82, 10.1103/PhysRevD.82.123005
Robertson, 2015, Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble Space Telescope, Astrophys. J., 802, L19, 10.1088/2041-8205/802/2/L19
Szabo, 1994, Implications of particle acceleration in active galactic nuclei for cosmic rays and high-energy neutrino astronomy, Astropart. Phys., 2, 375, 10.1016/0927-6505(94)90027-2
Protheroe, 1999, Cut-offs and pile-ups in shock acceleration spectra, Astropart. Phys., 10, 185, 10.1016/S0927-6505(98)00055-3
A. Aab, et al. [Pierre Auger Collaboration], The Pierre Auger Observatory: Contributions to the 33rd International Cosmic Ray Conference, ICRC 2013, arXiv:1307.5059 [astro-ph.HE].
Pierog, 2015, EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C, 92, 10.1103/PhysRevC.92.034906
Abreu, 2013, Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory, J. Cosmol. Astropart. Phys., 1302, 026
Globus, 2015, A complete model of the cosmic ray spectrum and composition across the galactic to extragalactic transition, Phys. Rev. D, 92, 10.1103/PhysRevD.92.021302
Anchordoqui, 2017, Unmasking the ultra-high-energy cosmic ray origin, PoS EPS, -HEP2017, 001
Supanitsky, 2018, Origin of the light cosmic ray component below the ankle, Phys. Rev. D, 98, 10.1103/PhysRevD.98.103016
Hasinger, 2005, Luminosity-dependent evolution of soft X-ray selected AGN: New Chandra and XMM-Newton surveys, Astron. Astrophys., 441, 417, 10.1051/0004-6361:20042134
T. Stanev, Ultra high energy cosmic rays and neutrinos after Auger, arXiv:0808.1045 [astro-ph].
Taylor, 2015, Indications of negative evolution for the sources of the highest energy cosmic rays, Phys. Rev. D, 92, 10.1103/PhysRevD.92.063011
Ajello, 2014, The cosmic evolution of Fermi BL Lacertae objects, Astrophys. J., 780, 73, 10.1088/0004-637X/780/1/73
Waxman, 1999, High-energy neutrinos from astrophysical sources: an upper bound, Phys. Rev. D, 59
Ahlers, 2005, Neutrinos as a diagnostic of cosmic ray galactic/extra-galactic transition, Phys. Rev. D, 72, 10.1103/PhysRevD.72.023001
T.K. Gaisser, Neutrino astronomy: Physics goals, detector parameters, arXiv:astro-ph/9707283.
Waxman, 1995, Cosmological origin for cosmic rays above 1019 eV, Astrophys. J., 452, L1
Ahlers, 2018, Opening a new window onto the universe with IceCube, Prog. Part. Nucl. Phys., 102, 73, 10.1016/j.ppnp.2018.05.001
Anchordoqui, 2004, Galactic point sources of TeV antineutrinos, Phys. Lett. B, 593, 42, 10.1016/j.physletb.2004.04.054
Frichter, 1997, Inelasticity in p-nucleus collisions and its application to high-energy cosmic ray cascades, Phys. Rev. D, 56, 3135, 10.1103/PhysRevD.56.3135
Learned, 1995, Detecting tau-neutrino oscillations at PeV energies, Astropart. Phys., 3, 267, 10.1016/0927-6505(94)00043-3
Berezinsky, 1969, Cosmic rays at ultrahigh-energies (neutrino?), Phys. Lett., 28B, 423, 10.1016/0370-2693(69)90341-4
Stecker, 1979, Diffuse fluxes of cosmic high-energy neutrinos, Astrophys. J., 228, 919, 10.1086/156919
Hill, 1983, Ultra-high-energy cosmic ray neutrinos, Phys. Lett. B, 131, 247, 10.1016/0370-2693(83)91130-9
Engel, 2001, Neutrinos from propagation of ultrahigh-energy protons, Phys. Rev. D, 64, 10.1103/PhysRevD.64.093010
Fodor, 2003, Bounds on the cosmogenic neutrino flux, J. Cosmol. Astropart. Phys., 0311, 015, 10.1088/1475-7516/2003/11/015
Hooper, 2005, The impact of heavy nuclei on the cosmogenic neutrino flux, Astropart. Phys., 23, 11, 10.1016/j.astropartphys.2004.11.002
Ave, 2005, Cosmogenic neutrinos from ultra-high energy nuclei, Astropart. Phys., 23, 19, 10.1016/j.astropartphys.2004.11.001
Anchordoqui, 2007, Predictions for the cosmogenic neutrino flux in light of new data from the Pierre Auger Observatory, Phys. Rev. D, 76, 10.1103/PhysRevD.76.123008
Kotera, 2010, Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV, J. Cosmol. Astropart. Phys., 1010, 013, 10.1088/1475-7516/2010/10/013
Ahlers, 2012, Minimal cosmogenic neutrinos, Phys. Rev. D, 86, 10.1103/PhysRevD.86.083010
R. Alves Batista, R.M. de Almeida, B. Lago, K. Kotera, Cosmogenic photon and neutrino fluxes in the Auger era, arXiv:1806.10879 [astro-ph.HE].
Ahlers, 2010, GZK neutrinos after the fermi-lat diffuse photon flux measurement, Astropart. Phys., 34, 106, 10.1016/j.astropartphys.2010.06.003
Gaisser, 1995, Particle astrophysics with high-energy neutrinos, Phys. Rep., 258, 173, 10.1016/0370-1573(95)00003-Y
Learned, 2000, High-energy neutrino astrophysics, Ann. Rev. Nucl. Part. Sci., 50, 679, 10.1146/annurev.nucl.50.1.679
Halzen, 2002, High-energy neutrino astronomy: The Cosmic ray connection, Rep. Progr. Phys., 65, 1025, 10.1088/0034-4885/65/7/201
Anchordoqui, 2010, In search for extraterrestrial high energy neutrinos, Ann. Rev. Nucl. Part. Sci., 60, 129, 10.1146/annurev.nucl.012809.104551
Halzen, 2007, Neutrino astrophysics experiments beneath the sea and ice, Science, 315, 66, 10.1126/science.1136504
Capelle, 1998, On the detection of ultrahigh-energy neutrinos with the Auger Observatory, Astropart. Phys., 8, 321, 10.1016/S0927-6505(97)00059-5
Domokos, 1998, Observation of UHE interactions neutrinos from outer space, AIP Conf. Proc., 433, 390
G. Domokos, S. Kovesi-Domokos, Observation of ultrahigh-energy neutrino interactions by orbiting detectors, arXiv:hep-ph/9805221.
Bertou, 2002, Tau neutrinos in the Auger Observatory: a new window to UHECR sources, Astropart. Phys., 17, 183, 10.1016/S0927-6505(01)00147-5
Feng, 2002, Observability of earth skimming ultrahigh-energy neutrinos, Phys. Rev. Lett., 88, 10.1103/PhysRevLett.88.161102
Fargion, 2002, Discovering ultra high energy neutrinos by horizontal and upward tau air-showers: evidences in terrestrial gamma flashes?, Astrophys. J., 570, 909, 10.1086/339772
Abraham, 2008, Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.211101
Abraham, 2009, Limit on the diffuse flux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory, Phys. Rev. D, 79, 10.1103/PhysRevD.79.102001
Abreu, 2011, A search for ultra-high-energy neutrinos in highly inclined events at the Pierre Auger Observatory, Phys. Rev. D, 84, 10.1103/PhysRevD.84.122005
Abreu, 2012, Search for point-like sources of ultra-high energy neutrinos at the Pierre Auger Observatory and improved limit on the diffuse flux of tau neutrinos, Astrophys. J., 755, L4, 10.1088/2041-8205/755/1/L4
Abreu, 2013, Ultra-high-energy neutrinos at the Pierre Auger Observatory, Adv. High Energy Phys., 2013, 10.1155/2013/708680
Aab, 2015, Improved limit to the diffuse flux of ultra-high-energy neutrinos from the Pierre Auger Observatory, Phys. Rev. D, 91, 10.1103/PhysRevD.91.092008
Anchordoqui, 2002, Neutrino bounds on astrophysical sources and new physics, Phys. Rev. D, 66, 10.1103/PhysRevD.66.103002
Feldman, 1998, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D, 57, 3873, 10.1103/PhysRevD.57.3873
Gandhi, 1998, Neutrino interactions at ultrahigh-energies, Phys. Rev. D, 58, 10.1103/PhysRevD.58.093009
M.G. Aartsen, et al. [IceCube Collaboration], Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data, arXiv:1807.01820 [astro-ph.HE].
Ahlers, 2009, Neutrino diagnostics of ultra-high energy cosmic ray protons, Phys. Rev. D, 79, 10.1103/PhysRevD.79.083009
Aloisio, 2015, Cosmogenic neutrinos and ultra-high energy cosmic ray models, J. Cosmol. Astropart. Phys., 1510, 006, 10.1088/1475-7516/2015/10/006
Heinze, 2016, Cosmogenic neutrinos challenge the cosmic ray proton dip model, Astrophys. J., 825, 122, 10.3847/0004-637X/825/2/122
Supanitsky, 2016, Implications of gamma-ray observations on proton models of ultra-high-energy cosmic rays, Phys. Rev. D, 94, 10.1103/PhysRevD.94.063002
Aartsen, 2016, Constraints on ultra-high-energy cosmic-ray sources from a search for neutrinos above 10 pev with icecube, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.241101
Fang, 2014, Testing the newborn pulsar origin of ultrahigh-energy cosmic rays with EeV neutrinos, Phys. Rev. D, 90, 10.1103/PhysRevD.90.103005
Fang, 2016, IceCube constraints on fast-spinning pulsars as high-energy neutrino sources, J. Cosmol. Astropart. Phys., 1604, 010, 10.1088/1475-7516/2016/04/010
Loeb, 2006, The cumulative background of high energy neutrinos from starburst galaxies, J. Cosmol. Astropart. Phys., 0605, 003, 10.1088/1475-7516/2006/05/003
M.G. Aartsen, et al. [IceCube Collaboration], IceCube-Gen2: A vision for the future of neutrino astronomy in Antarctica, arXiv:1412.5106 [astro-ph.HE].
Ressell, 1990, The grand unified photon spectrum: a coherent view of the diffuse extragalactic background radiation, Comments Astrophys., 14, 323
A. De Angelis, M. Mallamaci, Gamma-ray astrophysics, arXiv:1805.05642 [astro-ph.HE].
Nikishov, 1962, Absorption of high-energy photons in the universe, Sov. Phys.—JETP, 14, 393
Gould, 1966, Opacity of the universe to high-energy photons, Phys. Rev. Lett., 16, 252, 10.1103/PhysRevLett.16.252
Gould, 1967, Opacity of the universe to high-energy photons, Phys. Rev., 155, 1408, 10.1103/PhysRev.155.1408
Stecker, 1969, The cosmic gamma-ray spectrum from secondary-particle production in the metagalaxy, Astrophys. J., 157, 507, 10.1086/150091
Fazio, 1970, Predicted high energy break in the isotropic gamma-ray spectrum: A test of cosmological origin, Nature, 226, 135, 10.1038/226135a0
Aartsen, 2013, First observation of pev-energy neutrinos with IceCube, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.021103
Schonert, 2009, Vetoing atmospheric neutrinos in a high energy neutrino telescope, Phys. Rev. D, 79, 10.1103/PhysRevD.79.043009
Gaisser, 2014, Generalized self-veto probability for atmospheric neutrinos, Phys. Rev. D, 90, 10.1103/PhysRevD.90.023009
Aartsen, 2013, Evidence for high-energy extraterrestrial neutrinos at the icecube detector, Science, 342
Aartsen, 2014, Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.101101
Aartsen, 2015, Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube, Phys. Rev. D, 91, 10.1103/PhysRevD.91.022001
M.G. Aartsen, et al. [IceCube Collaboration], The IceCube neutrino observatory contributions to ICRC 2017 Part II: Properties of the atmospheric and astrophysical neutrino flux, arXiv:1710.01191 [astro-ph.HE].
Aartsen, 2015, A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with icecube, Astrophys. J., 809, 98, 10.1088/0004-637X/809/1/98
Aartsen, 2015, Evidence for astrophysical muon neutrinos from the Northern sky with IceCube, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.081102
Aartsen, 2016, Observation and characterization of a cosmic muon neutrino flux from the Northern hemisphere using six years of IceCube data, Astrophys. J., 833, 3, 10.3847/0004-637X/833/1/3
Ahlers, 2017, IceCube: neutrinos and multi-messenger astronomy, PTEP, 2017, 12A105
Anchordoqui, 2014, Cosmic neutrino pevatrons: A brand new pathway to astronomy, strophysics, and particle physics, JHEAp, 1–2, 1
Ahlers, 2015, High-energy cosmic neutrino puzzle: a review, Rep. Progr. Phys., 78, 10.1088/0034-4885/78/12/126901
Meszaros, 2017, Astrophysical sources of high energy neutrinos in the IceCube era, Ann. Rev. Nucl. Part. Sci., 67, 45, 10.1146/annurev-nucl-101916-123304
Aartsen, 2017, Constraints on galactic neutrino emission with seven years of IceCube data, Astrophys. J., 849, 67, 10.3847/1538-4357/aa8dfb
Anchordoqui, 2014, Pinning down the cosmic ray source mechanism with new IceCube data, Phys. Rev. D, 89, 10.1103/PhysRevD.89.083003
Neronov, 2014, PeV neutrinos from interactions of cosmic rays with the interstellar medium in the galaxy, Phys. Rev. D, 89, 10.1103/PhysRevD.89.103002
Anchordoqui, 2014, Estimating the contribution of galactic sources to the diffuse neutrino flux, Phys. Rev. D, 90, 10.1103/PhysRevD.90.123010
Neronov, 2016, Evidence the galactic contribution to the icecube astrophysical neutrino flux, Astropart. Phys., 75, 60, 10.1016/j.astropartphys.2015.11.002
Neronov, 2016, Galactic and extragalactic contributions to the astrophysical muon neutrino signal, Phys. Rev. D, 93, 10.1103/PhysRevD.93.123002
Neronov, 2018, Multi-messenger gamma-ray counterpart of the icecube neutrino signal, Phys. Rev. D, 98, 10.1103/PhysRevD.98.023004
Aartsen, 2016, Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, J. Cosmol. Astropart. Phys., 1601, 037
Aartsen, 2018, Neutrino emission from the direction of the blazar txs 0506+056 prior to the icecube-170922a alert, Science, 361, 147, 10.1126/science.aat2890
Ackermann, 2011, The second catalog of active galactic nuclei detected by the Fermi Large Area Telescope, Astrophys. J., 743, 171, 10.1088/0004-637X/743/2/171
Aartsen, 2017, The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux, Astrophys. J., 835, 45, 10.3847/1538-4357/835/1/45
Mena, 2014, Flavor composition of the high-energy neutrino events in icecube, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.091103
Chen, 2015, Two-component flux explanation for the high energy neutrino events at icecube, Phys. Rev. D, 92, 10.1103/PhysRevD.92.073001
Aartsen, 2015, Flavor ratio of astrophysical neutrinos above 35 TeV in IceCube, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.171102
Palomares-Ruiz, 2015, Spectral analysis of the high-energy icecube neutrinos, Phys. Rev. D, 91, 10.1103/PhysRevD.91.103008
Vincent, 2016, Analysis of the 4-year IceCube high-energy starting events, Phys. Rev. D, 94, 10.1103/PhysRevD.94.023009
Anchordoqui, 2017, Evidence for a break in the spectrum of astrophysical neutrinos, Phys. Rev. D, 95, 10.1103/PhysRevD.95.083009
Muzio, 2017, Detailed simulations of Fermi-LAT constraints on UHECR production scenarios, PoS ICRC, 2017, 557
Kachelriess, 2017, Minimal model for extragalactic cosmic rays and neutrinos, Phys. Rev. D, 96, 10.1103/PhysRevD.96.083006
Abbott, 2016, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.061102
Abbott, 2016, Properties of the binary black hole merger GW150914, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.241102
Abbott, 2016, GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.241103
Abbott, 2016, Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X, 6
Kotera, 2016, Ultra-high energy cosmic rays and black hole mergers, Astrophys. J., 823, L29, 10.3847/2041-8205/823/2/L29
Murase, 2016, Ultrafast outflows from black hole mergers with a minidisk, Astrophys. J., 822, L9, 10.3847/2041-8205/822/1/L9
Anchordoqui, 2016, Neutrino lighthouse powered by Sagittarius A∗ disk dynamo, Phys. Rev. D, 94, 10.1103/PhysRevD.94.023010
Aab, 2016, Ultra-high-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory, Phys. Rev. D, 94, 10.1103/PhysRevD.94.122007
Abbott, 2017, GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.161101
Abbott, 2017, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J., 848, L13, 10.3847/2041-8213/aa920c
Coulter, 2017, Swope supernova survey 2017a (SSS17a), the optical counterpart to a gravitational wave source, Science, 358, 1556, 10.1126/science.aap9811
Soares-Santos, 2017, The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817 I: Discovery of the optical counterpart using the Dark Energy Camera, Astrophys. J., 848, L16, 10.3847/2041-8213/aa9059
Valenti, 2017, The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck, Astrophys. J., 848, L24, 10.3847/2041-8213/aa8edf
Arcavi, 2017, Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger, Nature, 551, 64, 10.1038/nature24291
Lipunov, 2017, MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817, Astrophys. J., 850, L1, 10.3847/2041-8213/aa92c0
Tanvir, 2017, The emergence of a Lanthanide-Rich kilonova following the merger of two neutron stars, Astrophys. J., 848, L27, 10.3847/2041-8213/aa90b6
Pian, 2017, Spectroscopic identification of r-process nucleosynthesis in a double neutron star merger, Nature, 551, 67, 10.1038/nature24298
Troja, 2017, The X-ray counterpart to the gravitational wave event GW 170817, Nature, 551, 71, 10.1038/nature24290
Haggard, 2017, A deep Chandra X-ray study of neutron star coalescence GW170817, Astrophys. J., 848, L25, 10.3847/2041-8213/aa8ede
Hallinan, 2017, A radio counterpart to a neutron star merger, Science, 358, 1579, 10.1126/science.aap9855
Kasliwal, 2017, Illuminating gravitational waves: A concordant picture of photons from a neutron star merger, Science, 358, 1559, 10.1126/science.aap9455
Li, 1998, Transient events from neutron star mergers, Astrophys. J., 507, L59, 10.1086/311680
Metzger, 2010, Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei, Mon. Not. R. Astron. Soc., 406, 2650, 10.1111/j.1365-2966.2010.16864.x
Albert, 2017, Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, Astrophys. J., 850, L35, 10.3847/2041-8213/aa9aed
Biehl, 2018, Expected neutrino fluence from short gamma-ray burst 170817A and off-axis angle constraints, Mon. Not. R. Astron. Soc., 476, 1191, 10.1093/mnras/sty285
X. Rodrigues, D. Biehl, D. Boncioli, A.M. Taylor, Binary neutron star merger remnants as sources of cosmic rays below the ankle, arXiv:1806.01624 [astro-ph.HE].
Capella, 1994, Dual parton model, Phys. Rep., 236, 225, 10.1016/0370-1573(94)90064-7
E. Predazzi, Diffraction: past, present and future, arXiv:hep-ph/9809454.
Cline, 1973, High transverse momentum secondaries and rising total cross-sections in cosmic ray interactions, Phys. Rev. Lett., 31, 491, 10.1103/PhysRevLett.31.491
Ellis, 1974, Implications of parton model concepts for large transverse momentum production of hadrons, Phys. Rev. D, 9, 2027, 10.1103/PhysRevD.9.2027
Halzen, 1975, High transverse momentum secondaries in cosmic ray interactions up to 10,000,000GeV, Nuclear Phys. B, 92, 404, 10.1016/S0550-3213(75)80005-8
Pancheri, 1984, Events of very high-energy density at the CERN Spp̄S Collider, Nuclear Phys. A, 418, 117C, 10.1016/0375-9474(84)90546-3
Gaisser, 1985, Soft hard scattering in the TeV range, Phys. Rev. Lett., 54, 1754, 10.1103/PhysRevLett.54.1754
Dias de Deus, 1985, Semihard physics at the SPS pp̄ Colliders?, Nuclear Phys. B, 252, 369, 10.1016/0550-3213(85)90452-3
Pancheri, 1985, Jets in minimum bias physics, Phys. Lett. B, 159, 69, 10.1016/0370-2693(85)90121-2
Pancheri, 1986, Low pT jets and the rise with energy of the inelastic cross-section, Phys. Lett. B, 182, 199, 10.1016/0370-2693(86)91577-7
Albajar, 1988, Production of low transverse energy clusters in pp̄ collisions at s=0.2 TeV to 0.9 TeV and their interpretation in terms of QCD jets, Nuclear Phys. B, 309, 405, 10.1016/0550-3213(88)90450-6
Gribov, 1972, e+e− pair annihilation and deep inelastic ep scattering in perturbation theory, Yad. Fiz., 15, 1218
Gribov, 1972, Deep inelastic ep scattering in perturbation theory, Yad. Fiz., 15, 781
Dokshitzer, 1977, Calculation of the structure functions for deep inelastic scattering and e+e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys.—JETP, 46, 641
Altarelli, 1977, Asymptotic freedom in parton language, Nuclear Phys. B, 126, 298, 10.1016/0550-3213(77)90384-4
M. Dittmar, et al. Parton distributions, arXiv:0901.2504 [hep-ph].
Engel, 2003, Models of primary interactions, Nuclear Phys. Proc. Suppl., 122, 40, 10.1016/S0920-5632(03)80362-6
L. Anchordoqui, F. Halzen, Lessons in particle physics, arXiv:0906.1271.
Kwiecinski, 1991, Semihard QCD expectations for pp̄ scattering at CERN, Tevatron and SSC colliders, Phys. Rev. D, 43, 1560, 10.1103/PhysRevD.43.1560
Dias de Deus, 1987, Semihard QCD: minijets and elastic scattering, Phys. Lett. B, 196, 537, 10.1016/0370-2693(87)90816-1
Dias De Deus, 1973, Geometric scaling multiplicity distributions and cross-sections, Nuclear Phys. B, 59, 231, 10.1016/0550-3213(73)90485-9
Amaldi, 1980, Impact parameter interpretation of proton proton scattering from a critical review of all ISR data, Nuclear Phys. B, 166, 301, 10.1016/0550-3213(80)90229-1
Castaldi, 1983, Elastic scattering and total cross-section at very high-energies, Ann. Rev. Nucl. Part. Sci., 35, 351, 10.1146/annurev.ns.35.120185.002031
Block, 1985, High-energy pp̄ and pp forward elastic scattering and total cross-sections, Rev. Modern Phys., 57, 563, 10.1103/RevModPhys.57.563
Glauber, 1970, High-energy scattering of protons by nuclei, Nuclear Phys. B, 21, 135, 10.1016/0550-3213(70)90468-2
L’Heureux, 1985, Quark-gluon model for diffraction at high-energies, Phys. Rev. D, 32, 1681, 10.1103/PhysRevD.32.1681
Durand, 1987, QCD and rising cross sections, Phys. Rev. Lett., 58, 303, 10.1103/PhysRevLett.58.303
Durand, 1988, High-energy nucleon nucleus scattering and cosmic ray cross-sections, Phys. Rev. D, 38, 78, 10.1103/PhysRevD.38.78
Gaisser, 1989, Minijets in minimum bias events, Phys. Lett. B, 219, 375, 10.1016/0370-2693(89)90407-3
Fletcher, 1994, SIBYLL: An event generator for simulation of high-energy cosmic ray cascades, Phys. Rev. D, 50, 5710, 10.1103/PhysRevD.50.5710
Kalmykov, 1997, Quark-gluon string model and EAS simulation problems at ultra-high energies, Nuclear Phys. Proc. Suppl., 52B, 17, 10.1016/S0920-5632(96)00846-8
Alvarez-Muniz, 2002, Hybrid simulations of extensive air showers, Phys. Rev. D, 66, 10.1103/PhysRevD.66.033011
Froissart, 1961, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev., 123, 1053, 10.1103/PhysRev.123.1053
Ahn, 2009, Cosmic ray interaction event generator SIBYLL 2.1, Phys. Rev. D, 80, 10.1103/PhysRevD.80.094003
Sjostrand, 1988, Status of fragmentation models, Internat. J. Modern Phys. A, 3, 751, 10.1142/S0217751X88000345
Engel, 1992, Nucleus–nucleus collisions and interpretation of cosmic ray cascades, Phys. Rev. D, 46, 5013, 10.1103/PhysRevD.46.5013
Belov, 2006, p-air cross-section measurement at 1018.5 eV, Nuclear Phys. Proc. Suppl., 151, 197, 10.1016/j.nuclphysbps.2005.07.035
Block, 1999, Predicting proton air cross sections at s≈30TeV, using accelerator and cosmic ray data, Phys. Rev. Lett., 83, 4926, 10.1103/PhysRevLett.83.4926
Block, 2007, Ultra-high energy predictions of proton-air cross sections from accelerator data, Phys. Rev. D, 76, 10.1103/PhysRevD.76.111503
Baltrusaitis, 1984, Total proton proton cross-section at s=30 TeV, Phys. Rev. Lett., 52, 1380, 10.1103/PhysRevLett.52.1380
Honda, 1993, Inelastic cross-section for p-air collisions from air shower experiment and total cross-section for pp collisions at SSC energy, Phys. Rev. Lett., 70, 525, 10.1103/PhysRevLett.70.525
S.P. Knurenko, V.R. Sleptsova, I.E. Sleptsov, N.N. Kalmykov, S.S. Ostapchenko, Longitudinal EAS development at E0=1018 eV to 3×1019 eV and the QGSJET model, in: Proceedings of 26th International Cosmic Ray Conference, Salt Lake City, Utah, vol. 1, 1999, p. 372.
Aglietta, 2009, Measurement of the proton-air inelastic cross section at s≈2TeV from the EAS-TOP experiment, Phys. Rev. D, 79, 10.1103/PhysRevD.79.032004
Aielli, 2009, Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment, Phys. Rev. D, 80, 10.1103/PhysRevD.80.092004
Mielke, 1994, Cosmic ray hadron flux at sea level up to 15 TeV, J. Phys. G, 20, 637, 10.1088/0954-3899/20/4/010
M.N. Dyakonov, et al. Parameters of hadron interactions at E0>1017 eV on EAS development fluctuation data, in: Proceedings of 21st International Cosmic Ray Conference, Adelaide, Australia, vol. 9, 1990, p. 252.
R.A. Nam, S.I. Nikolsky, V.P. Pavlyuchenko, A.P. Chubenko, V.I. Yakovlev, Investigation of nucleon-nuclei of air cross-section at energy greater than 10 TeV, in: Proceedings of 14th International Cosmic Ray Conference, Munich, Germany, vol. 7, 1975, p. 2258.
Abreu, 2012, Measurement of the proton-air cross-section at s=57 TeV with the pierre auger observatory, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.062002
Abbasi, 2015, Measurement of the proton-air cross section with Telescope Array’s Middle Drum detector and surface array in hybrid mode, Phys. Rev. D, 92, 10.1103/PhysRevD.92.032007
d’Enterria, 2011, Constraints from the first lhc data on hadronic event generators for ultra-high energy cosmic-ray physics, Astropart. Phys., 35, 98, 10.1016/j.astropartphys.2011.05.002
Barbosa, 2004, Determination of the calorimetric energy in extensive air showers, Astropart. Phys., 22, 159, 10.1016/j.astropartphys.2004.06.007
Mccomb, 1979, Photoproduction in large cosmic ray showers, J. Phys. G, 5, 1613, 10.1088/0305-4616/5/11/016
Rossi, 1941, Cosmic-ray theory, Rev. Modern Phys., 13, 240, 10.1103/RevModPhys.13.240
Bethe, 1934, On the stopping of fast particles and on the creation of positive electrons, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 146, 83
Rossi, 1952
Weast, 1981
Tsai, 1974, Pair production and bremsstrahlung of charged leptons, Rev. Modern Phys., 46, 815, 10.1103/RevModPhys.46.815
Stanev, 1982, Development of ultra-high-energy electromagnetic cascades in water and lead including the Landau-Pomeranchuk-Migdal effect, Phys. Rev. D, 25, 1291, 10.1103/PhysRevD.25.1291
Cillis, 1999, Influence of the LPM effect and dielectric suppression on particle air showers, Phys. Rev. D, 59, 10.1103/PhysRevD.59.113012
Vankov, 2003, Ultra-high energy gamma rays in geomagnetic field and atmosphere, Phys. Rev. D, 67, 10.1103/PhysRevD.67.043002
Cillis, 2001, Extended air showers and muon interactions, Phys. Rev. D, 64, 10.1103/PhysRevD.64.013010
Anchordoqui, 2004, Footprints of superGZK cosmic rays in the Pilliga State Forest, Phys. Lett. B, 583, 213, 10.1016/j.physletb.2003.12.072
Heitler, 1944
J. Linsley, Structure of large air showers at depth 834 g/cm2: Applications, in: Proceedings of 15th International Cosmic Ray Conference, Plovdiv, Bulgaria, vol. 12, 1977, p. 89.
Matthews, 2005, A heitler model of extensive air showers, Astropart. Phys., 22, 387, 10.1016/j.astropartphys.2004.09.003
Ulrich, 2009, On the measurement of the proton-air cross section using air shower data, New J. Phys., 11, 10.1088/1367-2630/11/6/065018
Abu-Zayyad, 2000, Evidence for changing of cosmic ray composition between 1017 eV and 1018 eV from multicomponent measurements, Phys. Rev. Lett., 84, 4276, 10.1103/PhysRevLett.84.4276
Aab, 2015, Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events, Phys. Rev. D, 91, 10.1103/PhysRevD.91.032003
Abbasi, 2018, Study of muons from ultrahigh energy cosmic ray air showers measured with the Telescope Array experiment, Phys. Rev. D, 98, 10.1103/PhysRevD.98.022002
Farrar, 2013, A new physical phenomenon in ultrahigh energy collisions, EPJ Web Conf., 53, 07007, 10.1051/epjconf/20135307007
Anchordoqui, 2017, Strange fireball as an explanation of the muon excess in Auger data, Phys. Rev. D, 95, 10.1103/PhysRevD.95.063005
Tomar, 2017, Lorentz invariance violation as an explanation of the muon excess in Auger data, Phys. Rev. D, 95, 10.1103/PhysRevD.95.095035
Soriano, 2018, Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays, PoS ICRC, 2017, 342
Knapp, 2003, Extensive air shower simulations at the highest energies, Astropart. Phys., 19, 77, 10.1016/S0927-6505(02)00187-1
Ulrich, 2011, Hadronic multiparticle production at ultra-high energies and extensive air showers, Phys. Rev. D, 83, 10.1103/PhysRevD.83.054026
Lemaitre, 1931, Republication of: The beginning of the world from the point of view of quantum theory, Nature, 127, 706, 10.1038/127706b0
Hill, 1983, Monopolonium, Nuclear Phys. B, 224, 469, 10.1016/0550-3213(83)90386-3
Chudnovsky, 1986, Superconducting cosmic strings, Phys. Rev. D, 34, 944, 10.1103/PhysRevD.34.944
Hill, 1987, Ultra-high-energy cosmic rays from superconducting cosmic strings, Phys. Rev. D, 36, 1007, 10.1103/PhysRevD.36.1007
Bhattacharjee, 1989, Cosmic strings and ultra-high-energy cosmic rays, Phys. Rev. D, 40, 3968, 10.1103/PhysRevD.40.3968
Bhattacharjee, 1990, Ultra-high-energy particle flux from cosmic strings, Phys. Lett. B, 246, 365, 10.1016/0370-2693(90)90615-D
Bhattacharjee, 1992, Grand unified theories topological defects and ultra-high-energy cosmic rays, Phys. Rev. Lett., 69, 567, 10.1103/PhysRevLett.69.567
Bhattacharjee, 1995, Monopole annihilation and highest energy cosmic rays, Phys. Rev. D, 51, 4079, 10.1103/PhysRevD.51.4079
Berezinsky, 1997, High energy particles from monopoles connected by strings, Phys. Rev. D, 56, 2024, 10.1103/PhysRevD.56.2024
Berezinsky, 1997, Cosmic necklaces and ultrahigh energy cosmic rays, Phys. Rev. Lett., 79, 5202, 10.1103/PhysRevLett.79.5202
Bhattacharjee, 2000, Origin and propagation of extremely high-energy cosmic rays, Phys. Rep., 327, 109, 10.1016/S0370-1573(99)00101-5
Kuzmin, 1998, Ultra-high-energy cosmic rays: A window on postinflationary reheating epoch of the universe?, Phys. Atom. Nucl., 61, 1028
Kuzmin, 1998, Ultrahigh-energy cosmic rays superheavy long living particles, and matter creation after inflation, JETP Lett., 68, 271, 10.1134/1.567858
Dubovsky, 1998, Galactic anisotropy as signature of CDM related ultrahigh-energy cosmic rays, JETP Lett., 68, 107, 10.1134/1.567830
Berezinsky, 1998, Limiting SUSY QCD spectrum and its application for decays of superheavy particles, Phys. Lett. B, 434, 61, 10.1016/S0370-2693(98)00728-X
Birkel, 1998, Extremely high-energy cosmic rays from relic particle decays, Astropart. Phys., 9, 297, 10.1016/S0927-6505(98)00028-0
Sarkar, 2002, The high-energy cosmic ray spectrum from relic particle decay, Nuclear Phys. B, 621, 495, 10.1016/S0550-3213(01)00565-X
Kuzmin, 1999, Ultrahigh-energy cosmic rays and inflation relics, Phys. Rep., 320, 199, 10.1016/S0370-1573(99)00064-2
Hamaguchi, 1998, Superheavy dark matter with discrete gauge symmetries, Phys. Rev. D, 58, 10.1103/PhysRevD.58.103503
Hamaguchi, 1999, Long lived superheavy dark matter with discrete gauge symmetries, Phys. Rev. D, 59, 10.1103/PhysRevD.59.063507
Hamaguchi, 1999, Long-lived superheavy particles in dynamical supersymmetry-breaking models in supergravity, Phys. Rev. D, 60, 10.1103/PhysRevD.60.125009
Ellis, 1990, Confinement of fractional charges yields integer charged relics in string models, Phys. Lett. B, 247, 257, 10.1016/0370-2693(90)90893-B
Benakli, 1999, Natural candidates for superheavy dark matter in string and M theory, Phys. Rev. D, 59, 10.1103/PhysRevD.59.047301
Berezinsky, 1997, Ultra-high-energy cosmic rays without GZK cutoff, Phys. Rev. Lett., 79, 4302, 10.1103/PhysRevLett.79.4302
Blasi, 2002, Ultrahigh-energy cosmic rays from annihilation of superheavy dark matter, Astropart. Phys., 18, 57, 10.1016/S0927-6505(02)00113-5
Coriano, 2002, SUSY QCD and high energy cosmic rays I: Fragmentation functions of SUSY QCD, Phys. Rev. D, 65, 10.1103/PhysRevD.65.075001
Barbot, 2003, Detailed analysis of the decay spectrum of a super-heavy x particle, Astropart. Phys., 20, 5, 10.1016/S0927-6505(03)00134-8
Barbot, 2004, Decay of super-heavy particles: user guide of the SHdecay program, Comput. Phys. Comm., 157, 63, 10.1016/S0010-4655(03)00469-7
Aharonian, 1992, Photon/proton ratio as a diagnostic tool for topological defects as the sources of extremely high-energy cosmic rays, Phys. Rev. D, 46, 4188, 10.1103/PhysRevD.46.4188
Sigl, 1999, Probing grand unified theories with cosmic ray, gamma-ray and neutrino astrophysics, Phys. Rev. D, 59
Sigl, 1995, Helium photodisintegration and nucleosynthesis: Implications for topological defects, high-energy cosmic rays, and massive black holes, Phys. Rev. D, 52, 6682, 10.1103/PhysRevD.52.6682
Sigl, 1997, Cosmological neutrino signatures for grand unification scale physics, Phys. Lett. B, 392, 129, 10.1016/S0370-2693(96)01534-1
Protheroe, 1996, Limits on models of the ultrahigh energy cosmic rays based on topological defects, Phys. Rev. Lett., 77, 3708, 10.1103/PhysRevLett.77.3708
Protheroe, 1997, Limits on models of the ultrahigh energy cosmic rays based on topological defects, Phys. Rev. Lett., 78, 3420, 10.1103/PhysRevLett.78.3420
Protheroe, 1996, Are topological defects responsible for the 300-EeV cosmic rays?, Nuclear Phys. Proc. Suppl., 48, 485, 10.1016/0920-5632(96)00299-X
Sreekumar, 1998, EGRET observations of the extragalactic gamma-ray emission, Astrophys. J., 494, 523, 10.1086/305222
Berezinsky, 1998, Ultra-high-energy gamma-rays as signature of topological defects, Phys. Rev. D, 58, 10.1103/PhysRevD.58.103515
Abdo, 2010, The spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.101101
Berezinsky, 2011, Restricting UHECRs and cosmogenic neutrinos with Fermi-LAT, Phys. Lett. B, 695, 13, 10.1016/j.physletb.2010.11.019
Ackermann, 2015, The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, Astrophys. J., 799, 86, 10.1088/0004-637X/799/1/86
Berezinsky, 2016, High energy electromagnetic cascades in extragalactic space: physics and features, Phys. Rev. D, 94, 10.1103/PhysRevD.94.023007
Berezinsky, 2011, Extremely high energy neutrinos from cosmic strings, Phys. Rev. D, 84, 10.1103/PhysRevD.84.085006
Weiler, 1982, Resonant absorption of cosmic ray neutrinos by the relic neutrino background, Phys. Rev. Lett., 49, 234, 10.1103/PhysRevLett.49.234
Weiler, 1999, Cosmic ray neutrino annihilation on relic neutrinos revisited: A mechanism for generating air showers above the Greisen-Zatsepin-Kuzmin cutoff, Astropart. Phys., 11, 303, 10.1016/S0927-6505(98)00068-1
Fargion, 1999, Ultra-high-energy neutrino scattering onto relic light neutrinos in galactic halo as a possible source of highest energy extragalactic cosmic rays, Astrophys. J., 517, 725, 10.1086/307203
Aloisio, 2015, Super heavy dark matter in light of BICEP2, Planck and ultra high energy cosmic ray observations, J. Cosmol. Astropart. Phys., 1508, 024, 10.1088/1475-7516/2015/08/024
Christiansen, 2011, Search for cosmic strings in the COSMOS survey, Phys. Rev. D, 83, 10.1103/PhysRevD.83.122004
van Haasteren, 2011, Placing limits on the stochastic gravitational-wave background using European pulsar timing array data, Mon. Not. R. Astron. Soc., 414, 3117, 10.1111/j.1365-2966.2011.18613.x
Damour, 2005, Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows, Phys. Rev. D, 71, 10.1103/PhysRevD.71.063510
Olmez, 2010, Gravitational-wave stochastic background from kinks and cusps on cosmic ctrings, Phys. Rev. D, 81, 10.1103/PhysRevD.81.104028
L. Boyle, K. Finn, N. Turok, CPT symmetric universe, arXiv:1803.08928 [hep-ph].
L. Boyle, K. Finn, N. Turok, The Big Bang, CPT, and neutrino dark matter, arXiv:1803.08930 [hep-ph].
M.G. Aartsen, et al. [IceCube Collaboration], Search for neutrinos from decaying dark matter with IceCube, arXiv:1804.03848 [astro-ph.HE].
Gorham, 2006, The antarctic impulsive transient Antenna ultra-high energy neutrino detector design, performance, and sensitivity for 2006–2007 balloon flight, Astropart. Phys., 32, 10, 10.1016/j.astropartphys.2009.05.003
Gorham, 2018, Constraints on the diffuse high-energy neutrino flux from the third flight of ANITA, Phys. Rev. D, 98, 10.1103/PhysRevD.98.022001
Gorham, 2016, Characteristics of four upward-pointing cosmic-ray-like events observed with ANITA, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.071101
P.W. Gorham, et al. [ANITA Collaboration], Observation of an unusual upward-going cosmic-ray-like event in the third flight of ANITA, arXiv:1803.05088 [astro-ph.HE].
Anchordoqui, 2018, Upgoing ANITA events as evidence of the CPT symmetric universe, LHEP, 1, 13, 10.31526/LHEP.1.2018.03
Patterson, 1955, Age of the earth, Science, 121, 69, 10.1126/science.121.3134.69
Bienaymé, 2014, Weighing the local dark matter with RAVE red clump stars, Astron. Astrophys., 571, 92, 10.1051/0004-6361/201424478
Piffl, 2014, Constraining the Galaxy’s dark halo with RAVE stars, Mon. Not. R. Astron. Soc., 445, 3133, 10.1093/mnras/stu1948
McKee, 2015, Stars, gas, and dark matter in the solar neighborhood, Astrophys. J., 814, 13, 10.1088/0004-637X/814/1/13
S. Sivertsson, H. Silverwood, J.I. Read, G. Bertone, P. Steger, The local dark matter density from SDSS-SEGUE G-dwarfs, Mon. Not. Roy. Astron. Soc. http://dx.doi.org/10.1093/mnras/sty977.
D.A. Neufeld, G.R. Farrar, C.F. McKee, Dark matter that interacts with baryons: density distribution within the Earth and new constraints on the interaction cross-section, arXiv:1805.08794 [astro-ph.CO].
J.H. Adams, et al. White paper on EUSO-SPB2, 2017, arXiv:1703.04513 [astro-ph.HE].
Rédei, 1966, Possible experimental test of the existence of a universal length, Phys. Rev., 145, 999, 10.1103/PhysRev.145.999
Rédei, 1967, Validity of special relativity at small distances and the velocity dependence of the muon lifetime, Phys. Rev., 162, 1299, 10.1103/PhysRev.162.1299
Anchordoqui, 1997, Possible test of local Lorentz invariance from tau decays, Z. Phys. C, 73, 465, 10.1007/s002880050336
Coleman, 1999, High-energy tests of Lorentz invariance, Phys. Rev. D, 59, 10.1103/PhysRevD.59.116008
S.R. Coleman, S.L. Glashow, Evading the GZK cosmic ray cutoff, arXiv:hep-ph/9808446.
Aloisio, 2000, Probing the structure of space–time with cosmic rays, Phys. Rev. D, 62, 10.1103/PhysRevD.62.053010
Jankiewicz, 2004, Space–time foam and cosmic ray interactions, Astropart. Phys., 21, 651, 10.1016/j.astropartphys.2004.04.008
Galaverni, 2008, Lorentz violation in the photon sector and ultrahigh-energy cosmic rays, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.021102
Galaverni, 2008, Lorentz violation and ultrahigh-energy photons, Phys. Rev. D, 78, 10.1103/PhysRevD.78.063003
Mattingly, 2010, Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation, J. Cosmol. Astropart. Phys., 1002, 007, 10.1088/1475-7516/2010/02/007
Bietenholz, 2011, Cosmic rays and the search for a Lorentz invariance violation, Phys. Rep., 505, 145, 10.1016/j.physrep.2011.04.002
Stecker, 2017, Testing Lorentz symmetry using high energy astrophysics observations, Symmetry, 9, 201, 10.3390/sym9100201
Scully, 2009, Lorentz invariance violation and the observed spectrum of ultra-high energy cosmic rays, Astropart. Phys., 31, 220, 10.1016/j.astropartphys.2009.01.002
Stecker, 2009, Searching for new physics with ultra-high energy cosmic rays, New J. Phys., 11, 10.1088/1367-2630/11/8/085003
Saveliev, 2011, Lorentz invariance violation and chemical composition of ultra-high-energy cosmic rays, J. Cosmol. Astropart. Phys., 1103, 046, 10.1088/1475-7516/2011/03/046
Anchordoqui, 2018, New test of Lorentz symmetry using ultra-high-energy cosmic rays, Phys. Rev. D, 97, 10.1103/PhysRevD.97.043010
Boncioli, 2016, Future prospects of testing Lorentz invariance with UHECRs, PoS ICRC, 2015, 521
V. Pavlidou, T. Tomaras, What do the highest-energy cosmic-ray data suggest about possible new physics around 50 TeV? arXiv:1802.04806 [astro-ph.HE].
Kusenko, 2002, Neutrino cross-sections at high-energies and the future observations of ultrahigh-energy cosmic rays, Phys. Rev. Lett., 88, 10.1103/PhysRevLett.88.161101
Anchordoqui, 2002, Black holes from cosmic rays: Probes of extra dimensions and new limits on TeV scale gravity, Phys. Rev. D, 65, 10.1103/PhysRevD.65.124027
Anchordoqui, 2006, IceHEP high energy physics at the south pole, Ann. Physics, 321, 2660, 10.1016/j.aop.2005.11.015
Anchordoqui, 2006, Exotic neutrino interactions at the Pierre Auger Observatory, Astropart. Phys., 25, 14, 10.1016/j.astropartphys.2005.10.006
Anchordoqui, 2010, Using cosmic neutrinos to search for non-perturbative physics at the Pierre Auger Observatory, Phys. Rev. D, 82, 10.1103/PhysRevD.82.043001
Palomares-Ruiz, 2006, Acceptances for space-based and ground-based fluorescence detectors, and inference of the neutrino-nucleon cross-section above 1019 eV, Phys. Rev. D, 73, 10.1103/PhysRevD.73.083003
Olinto, 2017, POEMMA: probe of extreme multi-messenger astrophysics, PoS ICRC, 2017, 542
Stecker, 2004, Observing the ultra-high-energy universe with OWL eyes, Nuclear Phys. Proc. Suppl., 136C, 433, 10.1016/j.nuclphysbps.2004.10.027
Neronov, 2017, Sensitivity of a proposed space-based cherenkov astrophysical-neutrino telescope, Phys. Rev. D, 95, 10.1103/PhysRevD.95.023004
Cowan, 2011, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C, 71, 1554, 10.1140/epjc/s10052-011-1554-0
R.D. Cousins, Lectures on statistics in theory: Prelude to statistics in practice, arXiv:1807.05996 [physics.data-an].
Wilks, 1938, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist., 9, 60, 10.1214/aoms/1177732360
Deligny, 2019, Measurements and implications of cosmic ray anisotropies from TeV to trans-EeV energies, Astropart. Phys., 104, 13, 10.1016/j.astropartphys.2018.08.005