Ultra-high-energy cosmic rays

Physics Reports - Tập 801 - Trang 1-93 - 2019
Luis A. Anchordoqui

Tài liệu tham khảo

Abbott, 2017, Multi-messenger observations of a binary neutron star merger, Astrophys. J., 848, L12, 10.3847/2041-8213/aa91c9 Aartsen, 2018, Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science, 361 Aab, 2018, Indication of anisotropy in arrival directions of ultra-high-energy cosmic rays through comparison to the flux pattern of extragalactic gamma-ray sources, Astrophys. J. Lett., 853, L29, 10.3847/2041-8213/aaa66d Anchordoqui, 1999, Heavy nuclei at the end of the cosmic ray spectrum?, Phys. Rev. D, 60, 10.1103/PhysRevD.60.103001 Abbasi, 2008, First observation of the Greisen-Zatsepin-Kuzmin suppression, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.101101 Abraham, 2008, Observation of the suppression of the flux of cosmic rays above 4×1019 eV, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.061101 Abraham, 2010, Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory, Phys. Lett. B, 685, 239, 10.1016/j.physletb.2010.02.013 Greisen, 1966, End to the cosmic ray spectrum?, Phys. Rev. Lett., 16, 748, 10.1103/PhysRevLett.16.748 Zatsepin, 1966, Upper limit of the spectrum of cosmic rays, JETP Lett., 4, 78 Ade, 2016, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13, 10.1051/0004-6361/201525830 Tanabashi, 2018, Review of particle physics, Phys. Rev. D, 98, 10.1103/PhysRevD.98.030001 L.A. Anchordoqui, Ultra-high-energy cosmic rays: facts, myths, and legends, doi:10.5170/CERN-2013-003.303, arXiv:1104.0509 [hep-ph]. L.A. Anchordoqui, et al. Roadmap for ultra-high energy cosmic ray physics and astronomy (whitepaper for Snowmass 2013), arXiv:1307.5312 [astro-ph.HE]. Anchordoqui, 2003, Ultrahigh-energy cosmic rays: The state of the art before the Auger Observatory, Internat. J. Modern Phys. A, 18, 2229, 10.1142/S0217751X03013879 Torres, 2004, Astrophysical origins of ultrahigh energy cosmic rays, Rep. Progr. Phys., 67, 1663, 10.1088/0034-4885/67/9/R03 Anchordoqui, 2004, High energy physics in the atmosphere: Phenomenology of cosmic ray air showers, Ann. Physics, 314, 145, 10.1016/j.aop.2004.07.003 Hess, 1912, Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten [Observation of penetrating radiation in seven free balloon flights], Phys. Z., 13, 1084 Auger, 1938, Grandes gerbes cosmiques atmosphériques contenant des corpuscules ultrapénétrants [Extensive cosmic showers in the atmosphere containing ultra-penetrating particles], Compt. Rend. Hebd. Seances Acad. Sci., 206, 1721 Auger, 1939, Extensive cosmic ray showers, Rev. Modern Phys., 11, 288, 10.1103/RevModPhys.11.288 Clark, 1961, Cosmic-ray air showers at sea level, Phys. Rev., 122, 637, 10.1103/PhysRev.122.637 Linsley, 1963, Evidence for a primary cosmic-ray particle with energy 1020 eV, Phys. Rev. Lett., 10, 146, 10.1103/PhysRevLett.10.146 Penzias, 1965, A measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J., 142, 419, 10.1086/148307 Stecker, 1969, Photodisintegration of ultrahigh-energy cosmic rays by the universal radiation field, Phys. Rev., 180, 1264, 10.1103/PhysRev.180.1264 Puget, 1976, Photonuclear interactions of ultrahigh-energy cosmic rays and their astrophysical consequences, Astrophys. J., 205, 638, 10.1086/154321 Nagano, 2000, Observations and implications of the ultrahigh-energy cosmic rays, Rev. Modern Phys., 72, 689, 10.1103/RevModPhys.72.689 Kampert, 2012, Extensive air showers and ultra-high-energy cosmic rays: a historical review, Eur. Phys. J. H, 37, 359, 10.1140/epjh/e2012-30013-x Baltrusaitis, 1985, The Utah Fly’s Eye detector, Nucl. Instrum. Methods A, 240, 410, 10.1016/0168-9002(85)90658-8 Abu-Zayyad, 2000, The prototype high-resolution Fly’s Eye cosmic ray detector, Nucl. Instrum. Methods A, 450, 253, 10.1016/S0168-9002(00)00307-7 Abu-Zayyad, 2013, The surface detector array of the telescope array experiment, Nucl. Instrum. Methods A, 689, 87, 10.1016/j.nima.2012.05.079 Tokuno, 2012, New air fluorescence detectors employed in the telescope array experiment, Nucl. Instrum. Methods A, 676, 54, 10.1016/j.nima.2012.02.044 Abraham, 2004, Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instrum. Methods A, 523, 50, 10.1016/j.nima.2003.12.012 A. Aab, et al. [Pierre Auger Collaboration], The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference, ICRC 2017, arXiv:1708.06592 [astro-ph.HE]. Abraham, 2010, Trigger and aperture of the surface detector array of the Pierre Auger Observatory, Nucl. Instrum. Methods A, 613, 29, 10.1016/j.nima.2009.11.018 Abraham, 2010, The fluorescence detector of the Pierre Auger Observatory, Nucl. Instrum. Methods A, 620, 227, 10.1016/j.nima.2010.04.023 Abreu, 2011, The exposure of the hybrid detector of the Pierre Auger Observatory, Astropart. Phys., 34, 368, 10.1016/j.astropartphys.2010.10.001 Rybicki, 1979 M. Kachelriess, Lecture notes on high energy cosmic rays, arXiv:0801.4376 [astro-ph]. Maurin, 2014, A database of charged cosmic rays, Astron. Astrophys., 569, A32, 10.1051/0004-6361/201321344 Anchordoqui, 1999, Hadronic interactions models beyond collider energies, Phys. Rev. D, 59, 10.1103/PhysRevD.59.094003 Garcia Canal, 2009, Testing hadronic interaction packages at cosmic ray energies, Phys. Rev. D, 79 Gondolo, 1996, Charm production and high-energy atmospheric muon and neutrino fluxes, Astropart. Phys., 5, 309, 10.1016/0927-6505(96)00033-3 Aab, 2016, Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.192001 Linsley, 1981, Validity of scaling to 1020 eV and high-energy cosmic ray composition, Phys. Rev. Lett., 46, 459, 10.1103/PhysRevLett.46.459 Landau, 1953, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, Dokl. Akad. Nauk Ser. Fiz., 92, 535 Migdal, 1956, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev., 103, 1811, 10.1103/PhysRev.103.1811 Abraham, 2007, An upper limit to the photon fraction in cosmic rays above 1019-eV from the Pierre Auger Observatory, Astropart. Phys., 27, 155, 10.1016/j.astropartphys.2006.10.004 Abraham, 2008, Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory, Astropart. Phys., 29, 243, 10.1016/j.astropartphys.2008.01.003 Abraham, 2009, Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory, Astropart. Phys., 31, 399, 10.1016/j.astropartphys.2009.04.003 Aab, 2017, Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory, J. Cosmol. Astropart. Phys., 1704, 009, 10.1088/1475-7516/2017/04/009 Abraham, 2010, Measurement of the depth of maximum of extensive air showers above 1018 eV, Phys. Rev. Lett., 104 Aab, 2014, Depth of maximum of air-shower profiles at the Pierre Auger Observatory I: Measurements at energies above 1017.8 eV, Phys. Rev. D, 90, 10.1103/PhysRevD.90.122005 Unger, 2017, Highlights from the Pierre Auger Observatory, PoS ICRC, 2017, 1102 Abbasi, 2014, Study of ultrahigh energy cosmic ray composition using telescope array’s middle drum detector and surface array in hybrid mode, Astropart. Phys., 64, 49, 10.1016/j.astropartphys.2014.11.004 Abbasi, 2016, Report of the working group on the composition of ultrahigh energy cosmic rays, JPS Conf. Proc., 9 R.U. Abbasi, et al. [Telescope Array Collaboration], Depth of ultra-high energy cosmic ray induced air shower maxima measured by the Telescope Array Black Rock and Long Ridge FADC fluorescence detectors and surface array in hybrid mode, arXiv:1801.09784 [astro-ph.HE]. Hanlon, 2018, Report of the working group on the mass composition of ultrahigh energy cosmic rays, JPS Conf. Proc., 19 Aab, 2016, Evidence for a mixed mass composition at the ankle in the cosmic-ray spectrum, Phys. Lett. B, 762, 288, 10.1016/j.physletb.2016.09.039 Aab, 2017, Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory, Phys. Rev. D, 96, 10.1103/PhysRevD.96.122003 Ivanov, 2016, TA spectrum summary, PoS ICRC, 2015, 349 Aab, 2014, Depth of maximum of air-shower profiles at the Pierre Auger Observatory II: Composition implications, Phys. Rev. D, 90, 10.1103/PhysRevD.90.122006 A. Aab, et al. [Pierre Auger Collaboration], The Pierre Auger Observatory contributions to the 34th International Cosmic Ray Conference, ICRC 2015, arXiv:1509.03732 [astro-ph.HE]. Engelmann, 1990, Charge composition and energy spectra of cosmic-ray for elements from Be to NI: Results from HEAO-3-C2, Astron. Astrophys., 233, 96 Juliusson, 1974, Charge composition and energy spectra of cosmic-ray nuclei at energies above 20 GeV per nucleon, Astrophys. J., 191, 331, 10.1086/152972 Adriani, 2011, PAMELA measurements of cosmic-ray proton and helium spectra, Science, 332, 69, 10.1126/science.1199172 Adriani, 2013, Time dependence of the proton flux measured by PAMELA during the July 2006 - December 2009 solar minimum, Astrophys. J., 765, 91, 10.1088/0004-637X/765/2/91 Aguilar, 2015, Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.171103 Aguilar, 2015, Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.211101 Aguilar, 2017, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.251101 Ahn, 2009, Energy spectra of cosmic-ray nuclei at high energies, Astrophys. J., 707, 593, 10.1088/0004-637X/707/1/593 Yoon, 2011, Cosmic-ray proton and helium spectra from the first CREAM flight, Astrophys. J., 728, 122, 10.1088/0004-637X/728/2/122 Maestro, 2009, Measurements of cosmic-ray energy spectra with the 2nd CREAM flight, Nuclear Phys. Proc. Suppl., 196, 239, 10.1016/j.nuclphysbps.2009.09.045 Yoon, 2017, Proton and helium spectra from the CREAM-III flight, Astrophys. J., 839, 5, 10.3847/1538-4357/aa68e4 de Nolfo, 2006, Observations of the Li, Be, and B isotopes and constraints on cosmic-ray propagation, Adv. Space Res., 38, 1558, 10.1016/j.asr.2006.09.008 Lave, 2013, Galactic cosmic-ray energy spectra and composition during the 2009–2010 solar minimum period, Astrophys. J., 770, 117, 10.1088/0004-637X/770/2/117 Swordy, 1990, Relative abundances of secondary and primary cosmic rays at high energies, Astrophys. J., 349, 625, 10.1086/168349 Mueller, 1991, Energy spectra and composition of primary cosmic rays, Astrophys. J., 374, 356, 10.1086/170125 Aharonian, 2007, First ground based measurement of atmospheric Cherenkov light from cosmic rays, Phys. Rev. D, 75, 10.1103/PhysRevD.75.042004 P. Montini, et al. [ARGO-YBJ Collaboration], The bending of the proton plus helium flux in primary cosmic rays measured by the ARGO-YBJ experiment in the energy range from 20 TeV to 5 PeV, arXiv:1608.01389 [hep-ex]. Prosin, 2014, Tunka-133: Results of 3 year operation, Nucl. Instrum. Methods A, 756, 94, 10.1016/j.nima.2013.09.018 Korosteleva, 2007, Measurement of cosmic ray primary energy with the atmospheric Cherenkov light technique in extensive air showers, Nuclear Phys. Proc. Suppl., 165, 74, 10.1016/j.nuclphysbps.2006.11.012 M.G. Aartsen, et al. [IceCube Collaboration], The IceCube neutrino observatory contributions to ICRC 2015 Part III: cosmic rays, arXiv:1510.05225 [astro-ph.HE]. W.D. Apel, et al. [KASCADE-Grande Collaboration], The spectrum of high-energy cosmic rays measured with KASCADE-Grande, arXiv:1206.3834 [astro-ph.HE]. Schoo, 2016, The energy spectrum of cosmic rays in the range from 1014 to 1018eV, PoS ICRC, 2015, 263 Dembinski, 2017, Data-driven model of the cosmic-ray flux and mass composition from 10 GeV to 1011 GeV, PoS ICRC, 2017, 533 R.U. Abbasi, et al. Evidence for declination dependence of ultra-high-energy cosmic ray spectrum in the Northern hemisphere, arXiv:1801.07820 [astro-ph.HE]. R.U. Abbasi, et al. [Telescope Array Collaboration], Search for anisotropy in the ultra-high-energy cosmic ray spectrum using the Telescope Array surface detector, arXiv:1707.04967 [astro-ph.HE]. Gleeson, 1968, Solar modulation of galactic cosmic rays, Astrophys. J., 154, 1011, 10.1086/149822 Usoskin, 1936, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers, J. Geophys. Res. Space Phys., 116, A02104 Peters, 1961, Primary cosmic radiation and extensive air showers, Nuovo Cim., 22, 800, 10.1007/BF02783106 R.U. Abbasi, et al. The cosmic-ray energy spectrum between 2 PeV and 2 EeV observed with the TALE detector in monocular mode, arXiv:1803.01288 [astro-ph.HE]. Hillas, 1967, The energy spectrum of cosmic rays in an evolving universe, Phys. Lett. A, 24, 677, 10.1016/0375-9601(67)91023-7 Berezinsky, 2006, On astrophysical solution to ultrahigh-energy cosmic rays, Phys. Rev. D, 74, 10.1103/PhysRevD.74.043005 Aloisio, 2014, Ultrahigh energy cosmic rays: implications of Auger data for source spectra and chemical composition, J. Cosmol. Astropart. Phys., 1410, 020, 10.1088/1475-7516/2014/10/020 Unger, 2015, Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it, Phys. Rev. D, 92, 10.1103/PhysRevD.92.123001 Anchordoqui, 2015, Neutron β-decay as the origin of IceCube’s PeV (anti)neutrinos, Phys. Rev. D, 91, 10.1103/PhysRevD.91.027301 Farrar, 2016, The origin of the ankle in the UHECR spectrum, and of the extragalactic protons below it, PoS ICRC, 2015, 513 Aab, 2017, Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory, J. Cosmol. Astropart. Phys., 1704, 038, 10.1088/1475-7516/2017/04/038 Sommers, 2001, Cosmic ray anisotropy analysis with a full-sky observatory, Astropart. Phys., 14, 271, 10.1016/S0927-6505(00)00130-4 di Matteo, 2018, Arrival directions of cosmic rays at ultra-high energies, JPS Conf. Proc., 19 Abbasi, 2014, Indications of intermediate-scale anisotropy of cosmic rays with energy greater than 57 EeV in the Northern sky measured with the surface detector of the Telescope Array Experiment, Astrophys. J., 790, L21, 10.1088/2041-8205/790/2/L21 Abraham, 2007, Correlation of the highest energy cosmic rays with nearby extragalactic objects, Science, 318, 938, 10.1126/science.1151124 Aab, 2015, Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory, Astrophys. J., 804, 15, 10.1088/0004-637X/804/1/15 Li, 1983, Analysis methods for results in gamma-ray astronomy, Astrophys. J., 272, 317, 10.1086/161295 Matthews, 2017, Highlights from the Telescope Array, PoS ICRC, 2017, 1096 R.U. Abbasi, et al. Evidence of intermediate-scale energy spectrum anisotropy of cosmic rays E≥1019.2 eV with the Telescope Array surface detector, arXiv:1802.05003 [astro-ph.HE]. Anchordoqui, 2003, Full-sky search for ultra-high-energy cosmic ray anisotropies, Phys. Rev. D, 68, 10.1103/PhysRevD.68.083004 Denton, 2015, The fortuitous latitude of the Pierre Auger Observatory and Telescope Array for reconstructing the quadrupole moment, Astrophys. J., 802, 25, 10.1088/0004-637X/802/1/25 Aab, 2014, Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array, Astrophys. J., 794, 172, 10.1088/0004-637X/794/2/172 Denton, 2015, Sensitivity of full-sky experiments to large scale cosmic ray anisotropies, JHEAp, 8, 1 Linsley, 1975, Fluctuation effects on directional data, Phys. Rev. Lett., 34, 1530, 10.1103/PhysRevLett.34.1530 Wittkowski, 2018, On the anisotropy in the arrival directions of ultra-high-energy cosmic rays, Astrophys. J., 854, L3, 10.3847/2041-8213/aaa2f9 Aublin, 2005, Generalized 3d-reconstruction method of a dipole anisotropy in cosmic-ray distributions, Astron. Astrophys., 441, 407, 10.1051/0004-6361:20052833 Abreu, 2011, Search for first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory, Astropart. Phys., 34, 627, 10.1016/j.astropartphys.2010.12.007 Aab, 2015, Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°, Astrophys. J., 802, 111, 10.1088/0004-637X/802/2/111 Aab, 2017, Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8×1018 eV, Science, 357, 1266 Aab, 2018, Large-scale cosmic-ray anisotropies above 4 EeV measured by the Pierre Auger Observatory, Astrophys. J., 868, 4, 10.3847/1538-4357/aae689 Lemaitre, 1933, On Compton’s latitude effect of cosmic radiation, Phys. Rev., 43, 87, 10.1103/PhysRev.43.87 Swann, 1933, Application of Liouville’s theorem to electron orbits in the Earth’s magnetic field, Phys. Rev., 44, 224, 10.1103/PhysRev.44.224 Jansson, 2012, A new model of the galactic magnetic field, Astrophys. J., 757, 14, 10.1088/0004-637X/757/1/14 Jansson, 2012, The galactic magnetic field, Astrophys. J., 761, L11, 10.1088/2041-8205/761/1/L11 Unger, 2017, Uncertainties in the magnetic field of the Milky Way, PoS ICRC, 2017, 558 Compton, 1935, An apparent effect of galactic rotation on the intensity of cosmic rays, Phys. Rev., 47, 817, 10.1103/PhysRev.47.817 Kogut, 1993, Dipole anisotropy in the COBE DMR first year sky maps, Astrophys. J., 419, 1, 10.1086/173453 Hinshaw, 2009, Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Data processing, sky maps, and basic results, Astrophys. J. Suppl., 180, 225, 10.1088/0067-0049/180/2/225 Adam, 2015, Planck 2015 results I: Overview of products and scientific results, Astron. Astrophys., 594, A1 Kachelriess, 2006, The Compton-Getting effect on ultra-high energy cosmic rays of cosmological origin, Phys. Lett. B, 640, 225, 10.1016/j.physletb.2006.08.006 Globus, 2017, The extragalactic ultra-high energy cosmic-ray dipole, Astrophys. J., 850, L25, 10.3847/2041-8213/aa991b Globus, 2008, Propagation of high-energy cosmic rays in extragalactic turbulent magnetic fields: resulting energy spectrum and composition, Astron. Astrophys., 479, 97, 10.1051/0004-6361:20078653 Kronberg, 1994, Extragalactic magnetic fields, Rep. Progr. Phys., 57, 325, 10.1088/0034-4885/57/4/001 Blasi, 1999, Cosmological magnetic fields limits in an inhomogeneous universe, Astrophys. J., 514, L79, 10.1086/311958 Pshirkov, 2016, New limits on extragalactic magnetic fields from rotation measures, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.191302 Parizot, 2004, GZK horizon and magnetic fields, Nuclear Phys. Proc. Suppl., 136, 169, 10.1016/j.nuclphysbps.2004.10.034 Huchra, 2012, The 2MASS redshift survey: Description and data release, Astrophys. J. Suppl., 199, 26, 10.1088/0067-0049/199/2/26 Erdogdu, 2006, The dipole anisotropy of the 2 micron all-sky redshift survey, Mon. Not. R. Astron. Soc., 368, 1515, 10.1111/j.1365-2966.2006.10243.x Harari, 2015, Anisotropies of ultrahigh energy cosmic ray nuclei diffusing from extragalactic sources, Phys. Rev. D, 92, 10.1103/PhysRevD.92.063014 R.W. Clay, [Pierre Auger Collaboration], The anisotropy search program for the Pierre Auger Observatory, astro-ph/0308494. Ackermann, 2016, 2FHL: The second catalog of hard Fermi-LAT sources, Astrophys. J. Suppl., 222, 5, 10.3847/0067-0049/222/1/5 Ackermann, 2012, GeV observations of star-forming galaxies with Fermi-LAT, Astrophys. J., 755, 164, 10.1088/0004-637X/755/2/164 Tang, 2014, Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146, Astrophys. J., 794, 26, 10.1088/0004-637X/794/1/26 Peng, 2016, First detection of gev emission from an ultraluminous infrared galaxy: Arp 220 as seen with the Fermi Large Area Telescope, Astrophys. J., 821, L20, 10.3847/2041-8205/821/2/L20 Hayashida, 2013, Discovery of GeV emission from the Circinus galaxy with the Fermi Large Area Telescope, Astrophys. J., 779, 131, 10.1088/0004-637X/779/2/131 Acciari, 2009, A connection between star formation activity and cosmic rays in the starburst galaxy M82, Nature, 462, 770, 10.1038/nature08557 H. Abdalla, et al. [H.E.S.S. Collaboration], The starburst galaxy NGC 253 revisited by H.E.S.S. and Fermi-LAT, arXiv:1806.03866 [astro-ph.HE]. Fisher, 1953, Dispersion on a sphere, Proc. Roy. Soc. London Ser. A., 217, 295, 10.1098/rspa.1953.0064 Abreu, 2010, Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter, Astropart. Phys., 34, 314, 10.1016/j.astropartphys.2010.08.010 Harari, 2009, Kolmogorov–Smirnov test as a tool to study the distribution of ultra-high energy cosmic ray sources, Mon. Not. R. Astron. Soc., 394, 916, 10.1111/j.1365-2966.2008.14327.x J.K. Becker, P.L. Biermann, J. Dreyer, T.M. Kneiske, Cosmic Rays VI: Starburst galaxies at multiwavelengths, arXiv:0901.1775 [astro-ph.HE]. Acero, 2015, Fermi large area telescope third source catalog, Astrophys. J. Suppl., 218, 23, 10.1088/0067-0049/218/2/23 Anchordoqui, 2014, What icecube data tell us about neutrino emission from star-forming galaxies (so far), Phys. Rev. D, 89, 10.1103/PhysRevD.89.127304 Fang, 2014, Is the ultra-high energy cosmic-ray excess observed by the telescope array correlated with icecube neutrinos?, Astrophys. J., 794, 126, 10.1088/0004-637X/794/2/126 He, 2016, Monte Carlo Bayesian search for the plausible source of the Telescope Array hot spot, Phys. Rev. D, 93, 10.1103/PhysRevD.93.043011 Pfeffer, 2017, Ultra high-energy cosmic ray hotspots from tidal disruption events, Mon. Not. R. Astron. Soc., 466, 2922, 10.1093/mnras/stw3337 Attallah, 2018, Ultra-high-energy cosmic rays from nearby starburst galaxies, Mon. Not. R. Astron. Soc., 478, 800, 10.1093/mnras/sty986 Anchordoqui, 2018, Cosmic mass spectrometer, JHEAp, 17, 38 Globus, 2017, Can we reconcile the TA excess and hotspot with Auger observations?, Astrophys. J., 836, 163, 10.3847/1538-4357/836/2/163 Anchordoqui, 2003, Anisotropy at the end of the cosmic ray spectrum?, Phys. Rev. D, 67, 10.1103/PhysRevD.67.123006 Letessier-Selvon, 2011, Ultrahigh energy cosmic rays, Rev. Modern Phys., 83, 907, 10.1103/RevModPhys.83.907 D.S. Gorbunov, P.G. Tinyakov, I.I. Tkachev, S.V. Troitsky, On the interpretation of the cosmic-ray anisotropy at ultra-high energies, arXiv:0804.1088 [astro-ph]. J.H. Matthews, A.R. Bell, K.M. Blundell, A.T. Araudo, Fornax A, Centaurus A and other radio galaxies as sources of ultra-high energy cosmic rays, http://dx.doi.org/10.1093/mnrasl/sly099, arXiv:1805.01902 [astro-ph.HE]. Smida, 2016, The ultra-high-energy cosmic rays image of Virgo A, PoS ICRC, 2015, 470 Anjos, 2018, Ultrahigh-energy cosmic ray composition from the distribution of arrival directions, Phys. Rev. D, 98 Abbasi, 2018, Testing a reported correlation between arrival directions of ultra-high-energy cosmic rays and a flux pattern from nearby starburst galaxies using Telescope Array data, Astrophys, J., 867, L27, 10.3847/2041-8213/aaebf9 J. Biteau, et al. [Telescope Array and Pierre Auger Collaborations], Covering the sphere at ultra-high energies: full-sky cosmic-ray maps beyond the ankle and the flux suppression, in: Proceedings of Ultra High Energy Cosmic Rays 2018, 8–12 October 2018, Paris, to be published. Abu-Zayyad, 2013, The cosmic ray energy spectrum observed with the surface detector of the Telescope Array experiment, Astrophys. J., 768, L1, 10.1088/2041-8205/768/1/L1 Lemoine, 2009, Anisotropy vs chemical composition at ultra-high energies, J. Cosmol. Astropart. Phys., 0911, 009, 10.1088/1475-7516/2009/11/009 Liu, 2013, Constraints on the source of ultra-high-energy cosmic rays using anisotropy versus chemical composition, Astrophys. J., 776, 88, 10.1088/0004-637X/776/2/88 A. Aab, et al. [Pierre Auger Collaboration], The Pierre Auger Observatory upgrade: Preliminary design report, arXiv:1604.03637 [astro-ph.IM]. Aab, 2016, Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.241101 A. Aab, et al. [Pierre Auger Collaboration], Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory, arXiv:1806.05386 [astro-ph.IM]. Kido, 2017, The TA×4 experiment, PoS ICRC, 2017, 386 Hillas, 1984, The origin of ultrahigh-energy cosmic rays, Ann. Rev. Astron. Astrophys., 22, 425, 10.1146/annurev.aa.22.090184.002233 Swann, 1933, A mechanism of acquirement of cosmic ray energies by electrons, Phys. Rev., 43, 217, 10.1103/PhysRev.43.217 de Jager, 1994, Evidence for particle acceleration in a magnetized white dwarf from radio and gamma-ray observations, Astrophys. J. Suppl., 90, 775, 10.1086/191902 Ikhsanov, 2006, High-energy emission of fast rotating white dwarfs, Astron. Astrophys., 445, 305, 10.1051/0004-6361:20053179 Gunn, 1969, Acceleration of high-energy cosmic rays by pulsars, Phys. Rev. Lett., 22, 728, 10.1103/PhysRevLett.22.728 Blasi, 2000, Ultrahigh-energy cosmic rays from young neutron star winds, Astrophys. J., 533, L123, 10.1086/312626 Arons, 2003, Magnetars in the metagalaxy: an origin for ultrahigh-energy cosmic rays in the nearby universe, Astrophys. J., 589, 871, 10.1086/374776 Fang, 2012, Newly-born pulsars as sources of ultrahigh energy cosmic rays, Astrophys. J., 750, 118, 10.1088/0004-637X/750/2/118 Fang, 2013, Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts, J. Cosmol. Astropart. Phys., 1303, 010, 10.1088/1475-7516/2013/03/010 Blandford, 1977, Electromagnetic extractions of energy from Kerr black holes, Mon. Not. R. Astron. Soc., 179, 433, 10.1093/mnras/179.3.433 Znajek, 1978, The electric and magnetic conductivity of a Kerr hole, Mon. Not. R. Astron. Soc., 185, 833, 10.1093/mnras/185.4.833 Lovelace, 1976, Dynamo model of double radio sources, Nature, 262, 649, 10.1038/262649a0 Fermi, 1949, On the origin of the cosmic radiation, Phys. Rev., 75, 1169, 10.1103/PhysRev.75.1169 Fermi, 1954, Galactic magnetic fields and the origin of cosmic radiation, Astrophys. J., 119, 1, 10.1086/145789 Jokipii, 1971, Propagation of cosmic rays in the solar wind, Rev. Geophys., 9, 27, 10.1029/RG009i001p00027 Wenzel, 1989, Charged particle acceleration processes in the interplanetary medium, Adv. Space Res., 9, 179, 10.1016/0273-1177(89)90112-9 Scott, 1975, Cosmic-ray production in the Cassiopeia A supernova remnant, Astrophys. J., 197, L5, 10.1086/181763 Chevalier, 1979, Cosmic ray acceleration and the radio evolution of Cassiopeia A, Astrophys. J., 207, 450, 10.1086/154514 Chevalier, 1978, Further studies of particle acceleration in Cassiopeia A, Astrophys. J., 222, 527, 10.1086/156165 Cowsik, 1984, The evolution of supernova remnants as radio sources, Mon. Not. R. Astron. Soc., 207, 745, 10.1093/mnras/207.4.745 Torres, 2003, Supernova remnants and gamma-ray sources, Phys. Rep., 382, 303, 10.1016/S0370-1573(03)00201-1 P. Blasi, Cosmic ray acceleration in supernova remnants, http://dx.doi.org/10.1142/9789814329033_0061, arXiv:1012.5005 [astro-ph.HE]. Jokipii, 1985, On the origin of high-energy cosmic rays, Astrophys. J., 290, L1, 10.1086/184430 Jokipii, 1987, Ultra-high-energy cosmic rays in a galactic wind and its termination shock, Astrophys. J., 312, 170, 10.1086/164857 Bustard, 2017, Cosmic ray acceleration by a versatile family of galactic wind termination shocks, Astrophys. J., 835, 72, 10.3847/1538-4357/835/1/72 Merten, 2018, The propagation of cosmic rays from the galactic wind termination shock: Back to the Galaxy?, Astrophys. J., 859, 63, 10.3847/1538-4357/aabfdd Protheroe, 1983, On the origin of relativistic particles and gamma-rays in quasars, Astrophys. J., 265, 620, 10.1086/160707 Kazanas, 1986, The central engine of quasars and AGNs: hadronic interactions of shock accelerated relativistic protons, Astrophys. J., 304, 178, 10.1086/164152 Protheroe, 1992, High-energy cosmic rays from active galactic nuclei, Phys. Rev. Lett., 69, 2885, 10.1103/PhysRevLett.69.2885 Biermann, 1987, Synchrotron emission from shock waves in active galactic nuclei, Astrophys. J., 322, 643, 10.1086/165759 Rachen, 1993, Extragalactic ultrahigh-energy cosmic rays I: Contribution from hot spots in FR-II radio galaxies, Astron. Astrophys., 272, 161 Romero, 1996, A possible source of extragalactic cosmic rays with arrival energies beyond the GZK cutoff, Astropart. Phys., 5, 279, 10.1016/0927-6505(96)00029-1 Blandford, 1979, Relativistic jets as compact radio sources, Astrophys. J., 232, 34, 10.1086/157262 Mannheim, 1993, The proton blazar, Astron. Astrophys., 269, 67 Dermer, 2009, Ultrahigh energy cosmic rays from black hole jets of radio galaxies, New J. Phys., 11, 10.1088/1367-2630/11/6/065016 Caprioli, 2015, Espresso acceleration of ultra-high-energy cosmic rays, Astrophys. J., 811, L38, 10.1088/2041-8205/811/2/L38 Waxman, 1995, Cosmological gamma-ray bursts and the highest energy cosmic rays, Phys. Rev. Lett., 75, 386, 10.1103/PhysRevLett.75.386 Vietri, 1995, On the acceleration of ultrahigh-energy cosmic rays in gamma-ray bursts, Astrophys. J., 453, 883, 10.1086/176448 Anchordoqui, 2018, Acceleration of ultrahigh-energy cosmic rays in starburst superwinds, Phys. Rev. D, 97, 10.1103/PhysRevD.97.063010 Levinson, 2001, Probing microquasars with TeV neutrinos, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.171101 Aharonian, 2006, Microquasar LS 5039: a TeV gamma-ray emitter and a potential TeV neutrino source, J. Phys. Conf. Ser., 39, 408, 10.1088/1742-6596/39/1/106 Norman, 1995, The origin of cosmic rays above 1018.5 eV, Astrophys. J., 454, 60, 10.1086/176465 Kang, 1997, Contributions to the cosmic ray flux above the ankle: clusters of galaxies, Mon. Not. R. Astron. Soc., 286, 257, 10.1093/mnras/286.2.257 Ryu, 2003, Cosmological shock waves and their role in the large scale structure of the universe, Astrophys. J., 593, 599, 10.1086/376723 M. Ahlers, L.A. Anchordoqui, J.K. Becker, T.K. Gaisser, F. Halzen, D. Hooper, S.R. Klein. P. Mészáros, S. Razzaque, S. Sarkar, Neutrinos on the rocks: The IceCube yellow bookFERMILAB-FN-0847-A, YITP-SB-10-01. Ptitsyna, 2010, Physical conditions in potential sources of ultra-high-energy cosmic rays I: Updated Hillas plot and radiation-loss constraints, Phys.-Usp., 53, 691, 10.3367/UFNe.0180.201007c.0723 Chamel, 2008, Physics of neutron star crusts, Living Rev. Rel., 11, 10, 10.12942/lrr-2008-10 Ruderman, 1975, Theory of pulsars: Polar caps, sparks, and coherent microwave radiation, Astrophys. J., 196, 51, 10.1086/153393 D. Viganó, Magnetic fields in neutron stars, arXiv:1310.1243 [astro-ph.HE]. Goldreich, 1969, Pulsar electrodynamics, Astrophys. J., 157, 869, 10.1086/150119 V.S. Berezinsky, Acceleration to ultra high energies in magnetospheres of young pulsars, in: Proceedings of the 18th International Cosmic Ray Conference, vol. 2, 1983, p. 275. Faucher-Giguere, 2006, Birth and evolution of isolated radio pulsars, Astrophys. J., 643, 332, 10.1086/501516 Haensel, 1999, On the minimum period of uniformly rotating meutron stars, Astron. Astrophys., 344, 151 Ochelkov, 1980, Curvature radiation of relativistic particles in the magnetosphere of pulsars, Astrophys. Space Sci., 69, 439, 10.1007/BF00661929 Kotera, 2015, The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars, J. Cosmol. Astropart. Phys., 1508, 026, 10.1088/1475-7516/2015/08/026 Spitkovsky, 2006, Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators, Astrophys. J., 648, L51, 10.1086/507518 Boldt, 1999, Cosmic rays from remnants of quasars?, Mon. Not. R. Astron. Soc., 307, 491, 10.1046/j.1365-8711.1999.02600.x Boldt, 2000, Cosmic ray generation by quasar remnants: Constraints and implications, Mon. Not. R. Astron. Soc., 316, L29, 10.1046/j.1365-8711.2000.03768.x Neronov, 2009, Ultra-high energy cosmic ray production in the polar cap regions of black hole magnetospheres, New J. Phys., 11, 10.1088/1367-2630/11/6/065015 Moncada, 2017, Ultrahigh energy cosmic ray nuclei from remnants of dead quasars, JHEAp, 13–14, 32 Drury, 1994, Acceleration of cosmic rays, Contemp. Phys., 35, 231, 10.1080/00107519408222090 Krymskii, 1977, A regular mechanism for the acceleration of charged particles on the front of a shock wave, Akad. Nauk SSSR Dokl., 234, 1306 W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in: Proceedings of the 15th International Cosmic Ray Conference, vol. 11, 1977, p. 132. Bell, 1978, The acceleration of cosmic rays in shock fronts I, Mon. Not. R. Astron. Soc., 182, 147, 10.1093/mnras/182.2.147 Bell, 1978, The acceleration of cosmic rays in shock fronts II, Mon. Not. R. Astron. Soc., 182, 443, 10.1093/mnras/182.3.443 Blandford, 1978, Particle acceleration by astrophysical shocks, Astrophys. J., 221, L29, 10.1086/182658 Lagage, 1983, The maximum energy of cosmic rays accelerated by supernova shocks, Astron. Astrophys., 125, 249 Drury, 1983, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas, Rep. Progr. Phys., 46, 973, 10.1088/0034-4885/46/8/002 Blandford, 1987, Particle acceleration at astrophysical shocks: A theory of cosmic ray origin, Phys. Rep., 154, 1, 10.1016/0370-1573(87)90134-7 R.J. Protheroe, Acceleration and interaction of ultrahigh-energy cosmic rays, arXiv:astro-ph/9812055. Bell, 2013, Cosmic ray acceleration, Astropart. Phys., 43, 56, 10.1016/j.astropartphys.2012.05.022 Baerwald, 2013, UHECR escape mechanisms for protons and neutrons from GRBs, and the cosmic ray-neutrino connection, Astrophys. J., 768, 186, 10.1088/0004-637X/768/2/186 Gaisser, 1990 G.E. Romero, A.L. Müller, M. Roth, Particle acceleration in the superwinds of starburst galaxies, arXiv:1801.06483 [astro-ph.HE]. Jokipii, 1987, Rate of energy gain and maximum energy in diffusive shock acceleration, Astrophys. J., 313, 842, 10.1086/165022 Ferrand, 2014, Cosmic ray acceleration at perpendicular shocks in supernova remnants, Astrophys. J., 792, 133, 10.1088/0004-637X/792/2/133 Waxman, 2005, Extra-galactic sources of high energy neutrinos, Phys. Scr. T, 121, 147, 10.1088/0031-8949/2005/T121/022 Anchordoqui, 2008, High-energy neutrinos from astrophysical accelerators of cosmic ray nuclei, Astropart. Phys., 29, 1, 10.1016/j.astropartphys.2007.10.006 Wang, 2008, On the origin and survival of UHE cosmic-ray nuclei in GRBs and hypernovae, Astrophys. J., 677, 432, 10.1086/529018 Murase, 2008, High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray bursts and implications for multi-messenger astronomy, Phys. Rev. D, 78, 10.1103/PhysRevD.78.023005 Globus, 2015, UHECR acceleration at GRB internal shocks, Mon. Not. R. Astron. Soc., 451, 751, 10.1093/mnras/stv893 Biehl, 2018, Cosmic-ray and neutrino emission from gamma-ray bursts with a nuclear cascade, Astron. Astrophys., 611, A101, 10.1051/0004-6361/201731337 Zhang, 2018, Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei, Phys. Rev. D, 97, 10.1103/PhysRevD.97.083010 T. Piran, A new limit on the distances of nuclei UHECRs sources, arXiv:1005.3311 [astro-ph.HE]. H.C. Spruit, Essential magnetohydrodynamics for astrophysics, arXiv:1301.5572 [astro-ph.IM]. Blandford, 2000, Acceleration of ultrahigh-energy cosmic rays, Phys. Scr. T, 85, 191, 10.1238/Physica.Topical.085a00191 Dermer, 2010, Acceleration of ultra-high energy cosmic rays in the colliding shells of blazars and GRBs: Constraints from the Fermi Gamma ray Space Telescope, Astrophys. J., 724, 1366, 10.1088/0004-637X/724/2/1366 Cannoni, 2017, Lorentz invariant relative velocity and relativistic binary collisions, Internat. J. Modern Phys. A, 32, 10.1142/S0217751X17300022 Stecker, 1968, Effect of photomeson production by the universal radiation field on high-energy cosmic rays, Phys. Rev. Lett., 21, 1016, 10.1103/PhysRevLett.21.1016 Berezinsky, 1987, The hump in the ultrahigh-energy cosmic ray spectrum, Sov. Phys.—JETP, 66, 457 Berezinsky, 1988, A bump in the ultrahigh-energy cosmic ray spectrum, Astron. Astrophys., 199, 1 Fixsen, 2009, The temperature of the cosmic microwave background, Astrophys. J., 707, 916, 10.1088/0004-637X/707/2/916 Blumenthal, 1970, Energy loss of high-energy cosmic rays in pair-producing collisions with ambient photons, Phys. Rev. D, 1, 1596, 10.1103/PhysRevD.1.1596 Aharonian, 1994, Influence of the universal microwave background radiation on the extragalactic cosmic ray spectrum, Phys. Rev. D, 50, 1892, 10.1103/PhysRevD.50.1892 Armstrong, 1972, Total hadronic cross-section of gamma rays in hydrogen in the energy range 0.265 GeV to 4.215 GeV, Phys. Rev. D, 5, 1640, 10.1103/PhysRevD.5.1640 Montanet, 1994, Review of particle properties, Phys. Rev. D, 50, 1173, 10.1103/PhysRevD.50.1173 Golyak, 1992, A connection of inelasticity with multiplicity distribution at high-energies, Modern Phys. Lett. A, 7, 2401, 10.1142/S0217732392003839 Anchordoqui, 1998 Anchordoqui, 1997, Opacity of the microwave background radiation to ultra-high-energy cosmic rays, Nuclear Phys. Proc. Suppl., 52, B249, 10.1016/S0920-5632(96)00898-5 Anchordoqui, 1997, Effect of the 3-k background radiation on ultrahigh-energy cosmic rays, Phys. Rev. D, 55, 7356, 10.1103/PhysRevD.55.7356 Abramowitz, 1970 Chodorowski, 1992, Reaction rate and energy-loss rate for photopair production by relativistic nuclei, Astrophys. J., 400, 181, 10.1086/171984 Michalowski, 1977, Experimental study of nuclear shadowing in photoproduction, Phys. Rev. Lett., 39, 737, 10.1103/PhysRevLett.39.737 Hayward, 1963, Photodisintegration of light nuclei, Rev. Modern Phys., 35, 324, 10.1103/RevModPhys.35.324 Danos, 1965, Photonuclear reactions, Ann. Rev. Nucl. Part. Sci., 15, 29, 10.1146/annurev.ns.15.120165.000333 Stecker, 1999, Photodisintegration of ultrahigh-energy cosmic rays: A new determination, Astrophys. J., 512, 521, 10.1086/306816 Khan, 2005, Photodisintegration of ultra-high-energy cosmic rays revisited, Astropart. Phys., 23, 191, 10.1016/j.astropartphys.2004.12.007 Boncioli, 2017, Nuclear physics meets the sources of the ultra-high-energy cosmic rays, Sci. Rep., 7, 4882, 10.1038/s41598-017-05120-7 Karakula, 1993, The formation of the cosmic ray energy spectrum by a photon field, Astropart. Phys., 1, 229, 10.1016/0927-6505(93)90023-7 Anchordoqui, 2007, TeV γ− rays and neutrinos from photo-disintegration of nuclei in Cygnus OB2, Phys. Rev. D, 75, 10.1103/PhysRevD.75.063001 Soriano, 2018, Photodisintegration of 4he on the cosmic microwave background is less severe than earlier thought, Phys. Rev. D, 98, 10.1103/PhysRevD.98.043001 Anchordoqui, 2007, TeV gamma-rays from photo-disintegration/de-excitation of cosmic-ray nuclei, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.121101 Alves Batista, 2015, Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp, J. Cosmol. Astropart. Phys., 1510, 063 Gilmore, 2012, Semi-analytic modeling of the EBL and consequences for extragalactic gamma-ray spectra, Mon. Not. R. Astron. Soc., 422, 3189, 10.1111/j.1365-2966.2012.20841.x Epele, 1998, On the propagation of the highest energy cosmic ray nuclei, J. High Energy Phys., 9810, 009, 10.1088/1126-6708/1998/10/009 Hill, 1985, The ultrahigh-energy cosmic ray spectrum, Phys. Rev. D, 31, 564, 10.1103/PhysRevD.31.564 Stecker, 1989, Extragalactic radiation and the ultrahigh-energy cosmic ray spectrum, Nature, 342, 401, 10.1038/342401a0 Anchordoqui, 1998, A depression before the bump in the highest energy cosmic ray spectrum, Phys. Rev. D, 57, 7103, 10.1103/PhysRevD.57.7103 Allard, 2008, Implications of the cosmic ray spectrum for the mass composition at the highest energies, J. Cosmol. Astropart. Phys., 0810, 033, 10.1088/1475-7516/2008/10/033 Allard, 2012, Extragalactic propagation of ultrahigh energy cosmic-rays, Astropart. Phys., 39–40, 33, 10.1016/j.astropartphys.2011.10.011 Kotera, 2011, The astrophysics of ultrahigh energy cosmic rays, Ann. Rev. Astron. Astrophys., 49, 119, 10.1146/annurev-astro-081710-102620 Waxman, 1996, Images of bursting sources of high-energy cosmic rays I: Effects of magnetic fields, Astrophys. J., 472, L89, 10.1086/310367 Farrar, 2013, Galactic magnetic deflections and Centaurus A as a UHECR source, J. Cosmol. Astropart. Phys., 1301, 023, 10.1088/1475-7516/2013/01/023 G.R. Farrar, M.S. Sutherland, Deflections of UHECRs in the Galactic magnetic field, arXiv:1711.02730 [astro-ph.HE]. Fannaroff, 1974, The morphology of extragalactic radio sources of high and low luminosity, Mon. Not. R. Astron. Soc., 167, 31, 10.1093/mnras/167.1.31P Blandford, 1974, A ‘twin-exhaust’ model for double radio sources, Mon. Not. R. Astron. Soc., 169, 395, 10.1093/mnras/169.3.395 Rosen, 1999, A comparison of the morphology and stability of relativistic and nonrelativistic jets, Astrophys. J., 516, 729, 10.1086/307143 Begelman, 1984, Theory of extragalactic radio sources, Rev. Modern Phys., 56, 255, 10.1103/RevModPhys.56.255 Kolmogorov, 1941, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. Acad. Sci. URSS, 30, 201 Anchordoqui, 2001, An Auger test of the Cen A model of highest energy cosmic rays, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.081101 Anchordoqui, 2011, Update on tests of the Cen A neutron-emission model of highest energy cosmic rays, Phys. Rev. D, 84, 10.1103/PhysRevD.84.067301 Anchordoqui, 2002, A lower bound on the local extragalactic magnetic field, Phys. Rev. D, 65 Israel, 1998, Centaurus A (NGC 5128), Astron. Astrophys. Rev., 8, 237, 10.1007/s001590050011 Hardcastle, 2003, Radio and X-ray observations of the jet in Centaurus A, Astrophys. J., 593, 169, 10.1086/376519 Burns, 1983, The inner radio structure of Centaurus A: clues to the origin of the jet X-ray emission, Astrophys. J., 273, 128, 10.1086/161353 Sreekumar, 1999, Gev emission from the nearby radio galaxy Centaurus A, Astropart. Phys., 11, 221, 10.1016/S0927-6505(99)00054-7 Grindlay, 1975, Evidence for the detection of gamma rays from Centaurus A at Eγ≥3×1011 eV, Astrophys. J., 197, L9, 10.1086/181764 Abdo, 2009, Fermi large area telescope bright gamma-ray source list, Astrophys. J. Suppl., 183, 46, 10.1088/0067-0049/183/1/46 Abdo, 2009, Bright AGN source list from the first three months of the Fermi Large Area Telescope all-sky survey, Astrophys. J., 700, 597, 10.1088/0004-637X/700/1/597 Aharonian, 2009, Discovery of very high energy gamma-ray emission from Centaurus A with H.E.S.S., Astrophys. J., 695, L40, 10.1088/0004-637X/695/1/L40 Abdo, 2010, Fermi large area telescope view of the core of the radio galaxy Centaurus A, Astrophys. J., 719, 1433, 10.1088/0004-637X/719/2/1433 Abdo, 2010, Fermi gamma-ray imaging of a radio galaxy, Science, 328, 725, 10.1126/science.1184656 H. Abdalla, et al. [H. E. S. S. and Fermi-LAT Collaborations], The γ-ray spectrum of the core of Centaurus A as observed with H.E.S.S. and Fermi-LAT, arXiv:1807.07375 [astro-ph.HE]. Honda, 2009, Ultra-high energy cosmic-ray acceleration in the jet of Centaurus A, Astrophys. J., 706, 1517, 10.1088/0004-637X/706/2/1517 Junkes, 1993, Radio polarization surveys of Centaurus A (NGC 5128) I: The complete radio source at 6.3 cm, Astron. Astrophys., 269, 29 Junkes, 1993, Radio polarization surveys of Centaurus A (NGC 5128) I: The complete radio source at 6.3 cm, Astron. Astrophys., 274, 1009 Rieger, 2004, Shear acceleration in relativistic astrophysical jets, Astrophys. J., 617, 155, 10.1086/425167 Rieger, 2009, Cen A as TeV gamma-ray and possible UHE cosmic-ray source, Astron. Astrophys., 506, L41, 10.1051/0004-6361/200912562 Wykes, 2013, Mass entrainment and turbulence-driven acceleration of ultra-high energy cosmic rays in Centaurus A, Astron. Astrophys., 558, A19, 10.1051/0004-6361/201321622 Eilek, 2014, The dynamic age of Centaurus A, New J. Phys., 16, 10.1088/1367-2630/16/4/045001 Farrar, 2009, Giant AGN flares and cosmic ray bursts, Astrophys. J., 693, 329, 10.1088/0004-637X/693/1/329 G.R. Farrar, T. Piran, Tidal disruption jets as the source of ultra-high energy cosmic rays, arXiv:1411.0704 [astro-ph.HE]. Alves Batista, 2017, Ultrahigh-energy cosmic rays from tidally-ignited white dwarfs, Phys. Rev. D, 96 Zhang, 2017, High-energy cosmic ray nuclei from tidal disruption events: origin, survival, and implications, Phys. Rev. D, 96 Biehl, 2018, Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies, Sci. Rep., 8, 10828, 10.1038/s41598-018-29022-4 T.M. Heckman, T.A. Thompson, A brief review of galactic winds, arXiv:1701.09062. Veilleux, 2005, Galactic winds, Ann. Rev. Astron. Astrophys., 43, 769, 10.1146/annurev.astro.43.072103.150610 Long, 2014, A deep Chandra ACIS survey of M83, Astrophys. J. Suppl., 212, 21, 10.1088/0067-0049/212/2/21 MacFadyen, 1999, Collapsars: Gamma-ray bursts and explosions in failed supernovae, Astrophys. J., 524, 262, 10.1086/307790 J. Dreyer, J.K. Becker, W. Rhode, The starburst-GRB connection, arXiv:0909.0158 [astro-ph.HE]. P.L. Biermann, et al. The nature and origin of ultrahigh-energy cosmic ray particles, arXiv:1610.00944 [astro-ph.HE]. Chary, 2002, Are starburst galaxies the hosts of gamma-ray bursts?, Astrophys. J., 566, 229, 10.1086/337964 Stanek, 2006, Protecting life in the milky way: metals keep the GRBs away, Acta Astron., 56, 333 Modjaz, 2008, Measured metallicities at the sites of nearby broad-lined type Ic supernovae and implications for the SN-GRB connection, Astron. J., 135, 1136, 10.1088/0004-6256/135/4/1136 Jimenez, 2013, Reconciling the gamma-ray burst rate and star formation histories, Astrophys. J., 773, 126, 10.1088/0004-637X/773/2/126 Wang, 2007, High-energy cosmic rays and neutrinos from semi-relativistic hypernovae, Phys. Rev. D, 76, 10.1103/PhysRevD.76.083009 Ptuskin, 2010, Spectrum of galactic cosmic rays accelerated in supernova remnants, Astrophys. J., 718, 31, 10.1088/0004-637X/718/1/31 Chevalier, 1985, Wind from a starburst galaxy nucleus, Nature, 317, 44, 10.1038/317044a0 Lacki, 2014, The fermi bubbles as starburst wind termination shocks, Mon. Not. R. Astron. Soc., 444, L39, 10.1093/mnrasl/slu107 Kroupa, 2002, The initial mass function of stars: Evidence for uniformity in variable systems, Science, 295, 82, 10.1126/science.1067524 Strickland, 2009, Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82, Astrophys. J., 697, 2030, 10.1088/0004-637X/697/2/2030 Heckman, 2000, Absorption-line probes of gas and dust in galactic superwinds, Astrophys. J. Suppl., 129, 493, 10.1086/313421 Hoopes, 2007, The diverse properties of the most ultraviolet luminous galaxies discovered by the galaxy evolution explorer, Astrophys. J. Suppl., 173, 441, 10.1086/516644 Beirão, 2015, Spatially resolved Spitzer-IRS spectral maps of the superwind in M82, Mon. Not. R. Astron. Soc., 451, 2640, 10.1093/mnras/stv1101 Contursi, 2013, Spectroscopic FIR mapping of the disk and galactic wind of M82 with Herschel-PACS, Astron. Astrophys., 549, A118, 10.1051/0004-6361/201219214 Heckman, 1990, On the nature and implications of starburst-driven galactic superwinds, Astrophys. J. Suppl., 74, 833, 10.1086/191522 Veilleux, 2009, Warm molecular hydrogen in the galactic wind of M82, Astrophys. J., 700, L149, 10.1088/0004-637X/700/2/L149 Leroy, 2015, Themulti-phase cold fountain in M82 revealed by a wide, sensitive map of the molecular interstellar medium, Astrophys. J., 814, 83, 10.1088/0004-637X/814/2/83 Bolatto, 2013, The starburst-driven molecular wind in NGC 253 and the suppression of star formation, Nature, 499, 450, 10.1038/nature12351 Lacki, 2013, From 10K to 10 TK: Insights on the interaction between cosmic rays and gas in starbursts, Astrophys. Space Sci. Proc., 34, 411, 10.1007/978-3-642-35410-6_29 Shukurov, 2004, The effects of spiral arms on the multi-phase ISM, Astrophys. Space Sci., 289, 319, 10.1023/B:ASTR.0000014960.35780.2e Adebahr, 2013, M82 - A radio continuum and polarisation study I: Data reduction and cosmic ray propagation Astron, Astrophys., 555, A23 Beck, 1994, Multifrequency observations of the radio continuum emission from NGC 253 I: Magnetic fields and rotation measures in the bar and halo, Astron. Astrophys., 292, 409 Heesen, 2009, Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 I: The distribution and transport of cosmic rays, Astron. Astrophys., 494, 563, 10.1051/0004-6361:200810543 Heesen, 2009, Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 II: The magnetic field structure, Astron. Astrophys., 506, 1123, 10.1051/0004-6361/200911698 Heesen, 2011, Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 III: Helical magnetic fields in the nuclear outflow, Astron. Astrophys., 535, A79, 10.1051/0004-6361/201117618 M. Krause, Magnetic fields and halos in spiral galaxies, arXiv:1401.1317 [astro-ph.GA]. Thompson, 2006, Magnetic fields in starburst galaxies and the origin of the fir-radio correlation, Astrophys. J., 645, 186, 10.1086/504035 Paglione, 2012, Properties of nearby starburst galaxies based on their diffuse gamma-ray emission, Astrophys. J., 755, 106, 10.1088/0004-637X/755/2/106 Lacki, 2013, The equipartition magnetic field formula in starburst galaxies: Accounting for pionic secondaries and strong energy losses, Mon. Not. R. Astron. Soc., 430, 3171, 10.1093/mnras/stt122 Domingo-Santamaria, 2005, High energy gamma-ray emission from the starburst nucleus of NGC 253, Astron. Astrophys., 444, 403, 10.1051/0004-6361:20053613 de Cea del Pozo, 2009, Multi-messenger model for the starburst galaxy M82, Astrophys. J., 698, 1054, 10.1088/0004-637X/698/2/1054 B.C. Lacki, Sturm und drang: Supernova-driven turbulence, magnetic fields, and cosmic rays in the chaotic starburst interstellar medium, arXiv:1308.5232 [astro-ph.CO]. Thornley, 2000, Massive star formation and evolution in starburst galaxies: mid-infrared spectroscopy with ISO-SWS, Astrophys. J., 539, 641, 10.1086/309261 Torres, 2004, Theoretical modelling of the diffuse emission of gamma-rays from extreme regions of star formation: The Case of Arp 220, Astrophys. J., 617, 966, 10.1086/425415 Torres, 2012, Building up the spectrum of cosmic-rays in star-forming regions, Mon. Not. R. Astron. Soc., 423, 822, 10.1111/j.1365-2966.2012.20920.x Meurer, 2000, Star clusters and the duration of starbursts, ASP Conf. Ser., 211, 81 McQuinn, 2009, The true durations of starbursts: hst observations of three nearby dwarf starburst galaxies, Astrophys. J., 695, 561, 10.1088/0004-637X/695/1/561 McQuinn, 2010, The nature of starbursts II: The duration of starbursts in dwarf galaxies, Astrophys. J., 724, 49, 10.1088/0004-637X/724/1/49 de Grijs, 2001, Star formation time-scales in the nearby, prototype starburst galaxy M82, Astron. Geophys., 42, 14 de Grijs, 2003, Star cluster formation and disruption time-scales II: Evolution of the star cluster system in M82’s fossil starburst, Mon. Not. R. Astron. Soc., 340, 197, 10.1046/j.1365-8711.2003.06283.x Davidge, 2010, Shaken, not stirred: The disrupted disk of the starburst galaxy NGC 253, Astrophys. J., 725, 1342, 10.1088/0004-637X/725/1/1342 Davidge, 2016, The compact star-forming complex at the heart of NGC 253, Astrophys. J., 818, 142, 10.3847/0004-637X/818/2/142 Rieke, 1980, The nature of the nuclear sources in M82 and NGC 253, Astrophys. J., 238, 24, 10.1086/157954 Vink, 2003, On the magnetic fields and particle acceleration in cas a, Astrophys. J., 584, 758, 10.1086/345832 Yamazaki, 2004, Constraints on the diffusive shock acceleration from the nonthermal X-ray thin shells in SN1006 NE rim, Astron. Astrophys., 416, 595, 10.1051/0004-6361:20034212 Volk, 2005, Magnetic field amplification in tycho and other shell-type supernova remnants, Astron. Astrophys., 433, 229, 10.1051/0004-6361:20042015 Lucek, 2000, Non-linear amplification of a magnetic field driven by cosmic ray streaming, Mon. Not. R. Astron. Soc., 314, 65, 10.1046/j.1365-8711.2000.03363.x Bell, 2004, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays, Mon. Not. R. Astron. Soc., 353, 550, 10.1111/j.1365-2966.2004.08097.x Bell, 2005, The interaction of cosmic rays and magnetized plasma, Mon. Not. R. Astron. Soc., 358, 181, 10.1111/j.1365-2966.2005.08774.x Matthews, 2017, Amplification of perpendicular and parallel magnetic fields by cosmic ray currents, Mon. Not. R. Astron. Soc., 469, 1849, 10.1093/mnras/stx905 Lípari, 1997, Macchetto luminous ifrared galaxies II – NGC 4945: A nearby obscured starburst/seyfert nucleus, Astrophys. J. Suppl., 111, 369, 10.1086/313019 Marconi, 2000, The elusive active nucleus of NGC 4945, Astron. Astrophys., 357, 24 Levenson, 2002, Extreme X-ray iron lines in active galactic nuclei, Astrophys. J., 573, L81, 10.1086/342092 Strickland, 2004, A high spatial resolution X-ray and H-alpha study of hot gas in the halos of star-forming disk galaxies I: Spatial and spectral properties of the diffuse X-ray emission, Astrophys. J. Suppl., 151, 193, 10.1086/382214 Levenson, 2001, The seyfert-starburst connection in X-rays I: the data, Astrophys. J. Suppl., 133, 269, 10.1086/320355 Levenson, 2001, The seyfert-starburst connection in X-rays 2: Results and implications, Astrophys. J., 550, 230, 10.1086/319726 Levenson, 2004, Accretion and outflow in the AGN and starburst of NGC 5135, Astrophys. J., 602, 135, 10.1086/380836 Strickland, 2004, Winds from nuclear starbursts: old truths and recent progress on superwinds, IAU Symp., 222, 249, 10.1017/S1743921304002194 Colbert, 1996, Large scale outflows in edge-on seyfert galaxies I: optical emission- line imaging and optical spectroscopy, Astrophys. J. Suppl., 105, 75, 10.1086/192307 Colbert, 1998, Large scale outflows in edge-on seyfert galaxies III: Kiloparsec-scale soft X-ray emission, Astrophys. J., 496, 786, 10.1086/305417 Krolik, 1986, An X-ray heated wind in NGC 1068, Astrophys. J., 308, L55, 10.1086/184743 Soria, 2002, X-ray sources in the starburst spiral galaxy M83: nuclear region and discrete source population, Astron. Astrophys., 384, 99, 10.1051/0004-6361:20020026 Vogler, 2005, Dissecting the spiral galaxy M83: Mid-infrared emission and comparison with other tracers of star formation, Astron. Astrophys., 441, 491, 10.1051/0004-6361:20042342 Veilleux, 1997, Artillery shells over Circinus, Astrophys. J., 479, L105, 10.1086/310588 Elmouttie, 1998, The kinematics of the ionized gas in the Circinus galaxy, Mon. Not. R. Astron. Soc., 297, 49, 10.1046/j.1365-8711.1998.01402.x Luppino, 1993, Tonry infrared surface brightness fluctuations: K′-band observations of M32, M32, and Maffei 1, Astrophys. J., 410, 81, 10.1086/172726 Krismer, 1995, IC 342/Maffei group of galaxies and distances for two of its members, Astron. J., 110, 1584, 10.1086/117632 Buta, 1999, The IC 342/Maffei group revealed, Astrophys. J. Suppl., 124, 33, 10.1086/313255 Tikhonov, 2010, Distance to the galaxy IC 342, Astron. Lett., 36, 167, 10.1134/S1063773710030023 Schinnerer, 2008, Self-regulated fueling of galaxy centers: Evidence for star-formation feedback in IC342’s nucleus, Astrophys. J., 684, L21, 10.1086/592109 Bregman, 1993, X-ray emission from the starburst galaxy IC 342, Astrophys. J., 415, L79, 10.1086/187037 Taylor, 2011, The need for a local source of UHE CR nuclei, Phys. Rev. D, 84, 10.1103/PhysRevD.84.105007 Ahlers, 2013, Ensemble fluctuations of the flux and nuclear composition of ultrahigh energy cosmic ray nuclei, Phys. Rev. D, 87, 10.1103/PhysRevD.87.023004 L.A. Anchordoqui, M. Ahlers, A.V. Olinto, T.C. Paul, A.M. Taylor, Sensitivity of JEM-EUSO to ensemble fluctuations in the ultra-high energy cosmic ray flux, arXiv:1306.0910 [astro-ph.CO]. Hooper, 2008, The intergalactic propagation of ultra-high energy cosmic ray nuclei: an analytic approach, Phys. Rev. D, 77, 10.1103/PhysRevD.77.103007 Ahlers, 2010, Analytic solutions of ultra-high energy cosmic ray nuclei revisited, Phys. Rev. D, 82, 10.1103/PhysRevD.82.123005 Robertson, 2015, Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble Space Telescope, Astrophys. J., 802, L19, 10.1088/2041-8205/802/2/L19 Szabo, 1994, Implications of particle acceleration in active galactic nuclei for cosmic rays and high-energy neutrino astronomy, Astropart. Phys., 2, 375, 10.1016/0927-6505(94)90027-2 Protheroe, 1999, Cut-offs and pile-ups in shock acceleration spectra, Astropart. Phys., 10, 185, 10.1016/S0927-6505(98)00055-3 A. Aab, et al. [Pierre Auger Collaboration], The Pierre Auger Observatory: Contributions to the 33rd International Cosmic Ray Conference, ICRC 2013, arXiv:1307.5059 [astro-ph.HE]. Pierog, 2015, EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C, 92, 10.1103/PhysRevC.92.034906 Abreu, 2013, Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory, J. Cosmol. Astropart. Phys., 1302, 026 Globus, 2015, A complete model of the cosmic ray spectrum and composition across the galactic to extragalactic transition, Phys. Rev. D, 92, 10.1103/PhysRevD.92.021302 Anchordoqui, 2017, Unmasking the ultra-high-energy cosmic ray origin, PoS EPS, -HEP2017, 001 Supanitsky, 2018, Origin of the light cosmic ray component below the ankle, Phys. Rev. D, 98, 10.1103/PhysRevD.98.103016 Hasinger, 2005, Luminosity-dependent evolution of soft X-ray selected AGN: New Chandra and XMM-Newton surveys, Astron. Astrophys., 441, 417, 10.1051/0004-6361:20042134 T. Stanev, Ultra high energy cosmic rays and neutrinos after Auger, arXiv:0808.1045 [astro-ph]. Taylor, 2015, Indications of negative evolution for the sources of the highest energy cosmic rays, Phys. Rev. D, 92, 10.1103/PhysRevD.92.063011 Ajello, 2014, The cosmic evolution of Fermi BL Lacertae objects, Astrophys. J., 780, 73, 10.1088/0004-637X/780/1/73 Waxman, 1999, High-energy neutrinos from astrophysical sources: an upper bound, Phys. Rev. D, 59 Ahlers, 2005, Neutrinos as a diagnostic of cosmic ray galactic/extra-galactic transition, Phys. Rev. D, 72, 10.1103/PhysRevD.72.023001 T.K. Gaisser, Neutrino astronomy: Physics goals, detector parameters, arXiv:astro-ph/9707283. Waxman, 1995, Cosmological origin for cosmic rays above 1019 eV, Astrophys. J., 452, L1 Ahlers, 2018, Opening a new window onto the universe with IceCube, Prog. Part. Nucl. Phys., 102, 73, 10.1016/j.ppnp.2018.05.001 Anchordoqui, 2004, Galactic point sources of TeV antineutrinos, Phys. Lett. B, 593, 42, 10.1016/j.physletb.2004.04.054 Frichter, 1997, Inelasticity in p-nucleus collisions and its application to high-energy cosmic ray cascades, Phys. Rev. D, 56, 3135, 10.1103/PhysRevD.56.3135 Learned, 1995, Detecting tau-neutrino oscillations at PeV energies, Astropart. Phys., 3, 267, 10.1016/0927-6505(94)00043-3 Berezinsky, 1969, Cosmic rays at ultrahigh-energies (neutrino?), Phys. Lett., 28B, 423, 10.1016/0370-2693(69)90341-4 Stecker, 1979, Diffuse fluxes of cosmic high-energy neutrinos, Astrophys. J., 228, 919, 10.1086/156919 Hill, 1983, Ultra-high-energy cosmic ray neutrinos, Phys. Lett. B, 131, 247, 10.1016/0370-2693(83)91130-9 Engel, 2001, Neutrinos from propagation of ultrahigh-energy protons, Phys. Rev. D, 64, 10.1103/PhysRevD.64.093010 Fodor, 2003, Bounds on the cosmogenic neutrino flux, J. Cosmol. Astropart. Phys., 0311, 015, 10.1088/1475-7516/2003/11/015 Hooper, 2005, The impact of heavy nuclei on the cosmogenic neutrino flux, Astropart. Phys., 23, 11, 10.1016/j.astropartphys.2004.11.002 Ave, 2005, Cosmogenic neutrinos from ultra-high energy nuclei, Astropart. Phys., 23, 19, 10.1016/j.astropartphys.2004.11.001 Anchordoqui, 2007, Predictions for the cosmogenic neutrino flux in light of new data from the Pierre Auger Observatory, Phys. Rev. D, 76, 10.1103/PhysRevD.76.123008 Kotera, 2010, Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV, J. Cosmol. Astropart. Phys., 1010, 013, 10.1088/1475-7516/2010/10/013 Ahlers, 2012, Minimal cosmogenic neutrinos, Phys. Rev. D, 86, 10.1103/PhysRevD.86.083010 R. Alves Batista, R.M. de Almeida, B. Lago, K. Kotera, Cosmogenic photon and neutrino fluxes in the Auger era, arXiv:1806.10879 [astro-ph.HE]. Ahlers, 2010, GZK neutrinos after the fermi-lat diffuse photon flux measurement, Astropart. Phys., 34, 106, 10.1016/j.astropartphys.2010.06.003 Gaisser, 1995, Particle astrophysics with high-energy neutrinos, Phys. Rep., 258, 173, 10.1016/0370-1573(95)00003-Y Learned, 2000, High-energy neutrino astrophysics, Ann. Rev. Nucl. Part. Sci., 50, 679, 10.1146/annurev.nucl.50.1.679 Halzen, 2002, High-energy neutrino astronomy: The Cosmic ray connection, Rep. Progr. Phys., 65, 1025, 10.1088/0034-4885/65/7/201 Anchordoqui, 2010, In search for extraterrestrial high energy neutrinos, Ann. Rev. Nucl. Part. Sci., 60, 129, 10.1146/annurev.nucl.012809.104551 Halzen, 2007, Neutrino astrophysics experiments beneath the sea and ice, Science, 315, 66, 10.1126/science.1136504 Capelle, 1998, On the detection of ultrahigh-energy neutrinos with the Auger Observatory, Astropart. Phys., 8, 321, 10.1016/S0927-6505(97)00059-5 Domokos, 1998, Observation of UHE interactions neutrinos from outer space, AIP Conf. Proc., 433, 390 G. Domokos, S. Kovesi-Domokos, Observation of ultrahigh-energy neutrino interactions by orbiting detectors, arXiv:hep-ph/9805221. Bertou, 2002, Tau neutrinos in the Auger Observatory: a new window to UHECR sources, Astropart. Phys., 17, 183, 10.1016/S0927-6505(01)00147-5 Feng, 2002, Observability of earth skimming ultrahigh-energy neutrinos, Phys. Rev. Lett., 88, 10.1103/PhysRevLett.88.161102 Fargion, 2002, Discovering ultra high energy neutrinos by horizontal and upward tau air-showers: evidences in terrestrial gamma flashes?, Astrophys. J., 570, 909, 10.1086/339772 Abraham, 2008, Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.211101 Abraham, 2009, Limit on the diffuse flux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory, Phys. Rev. D, 79, 10.1103/PhysRevD.79.102001 Abreu, 2011, A search for ultra-high-energy neutrinos in highly inclined events at the Pierre Auger Observatory, Phys. Rev. D, 84, 10.1103/PhysRevD.84.122005 Abreu, 2012, Search for point-like sources of ultra-high energy neutrinos at the Pierre Auger Observatory and improved limit on the diffuse flux of tau neutrinos, Astrophys. J., 755, L4, 10.1088/2041-8205/755/1/L4 Abreu, 2013, Ultra-high-energy neutrinos at the Pierre Auger Observatory, Adv. High Energy Phys., 2013, 10.1155/2013/708680 Aab, 2015, Improved limit to the diffuse flux of ultra-high-energy neutrinos from the Pierre Auger Observatory, Phys. Rev. D, 91, 10.1103/PhysRevD.91.092008 Anchordoqui, 2002, Neutrino bounds on astrophysical sources and new physics, Phys. Rev. D, 66, 10.1103/PhysRevD.66.103002 Feldman, 1998, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D, 57, 3873, 10.1103/PhysRevD.57.3873 Gandhi, 1998, Neutrino interactions at ultrahigh-energies, Phys. Rev. D, 58, 10.1103/PhysRevD.58.093009 M.G. Aartsen, et al. [IceCube Collaboration], Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data, arXiv:1807.01820 [astro-ph.HE]. Ahlers, 2009, Neutrino diagnostics of ultra-high energy cosmic ray protons, Phys. Rev. D, 79, 10.1103/PhysRevD.79.083009 Aloisio, 2015, Cosmogenic neutrinos and ultra-high energy cosmic ray models, J. Cosmol. Astropart. Phys., 1510, 006, 10.1088/1475-7516/2015/10/006 Heinze, 2016, Cosmogenic neutrinos challenge the cosmic ray proton dip model, Astrophys. J., 825, 122, 10.3847/0004-637X/825/2/122 Supanitsky, 2016, Implications of gamma-ray observations on proton models of ultra-high-energy cosmic rays, Phys. Rev. D, 94, 10.1103/PhysRevD.94.063002 Aartsen, 2016, Constraints on ultra-high-energy cosmic-ray sources from a search for neutrinos above 10 pev with icecube, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.241101 Fang, 2014, Testing the newborn pulsar origin of ultrahigh-energy cosmic rays with EeV neutrinos, Phys. Rev. D, 90, 10.1103/PhysRevD.90.103005 Fang, 2016, IceCube constraints on fast-spinning pulsars as high-energy neutrino sources, J. Cosmol. Astropart. Phys., 1604, 010, 10.1088/1475-7516/2016/04/010 Loeb, 2006, The cumulative background of high energy neutrinos from starburst galaxies, J. Cosmol. Astropart. Phys., 0605, 003, 10.1088/1475-7516/2006/05/003 M.G. Aartsen, et al. [IceCube Collaboration], IceCube-Gen2: A vision for the future of neutrino astronomy in Antarctica, arXiv:1412.5106 [astro-ph.HE]. Ressell, 1990, The grand unified photon spectrum: a coherent view of the diffuse extragalactic background radiation, Comments Astrophys., 14, 323 A. De Angelis, M. Mallamaci, Gamma-ray astrophysics, arXiv:1805.05642 [astro-ph.HE]. Nikishov, 1962, Absorption of high-energy photons in the universe, Sov. Phys.—JETP, 14, 393 Gould, 1966, Opacity of the universe to high-energy photons, Phys. Rev. Lett., 16, 252, 10.1103/PhysRevLett.16.252 Gould, 1967, Opacity of the universe to high-energy photons, Phys. Rev., 155, 1408, 10.1103/PhysRev.155.1408 Stecker, 1969, The cosmic gamma-ray spectrum from secondary-particle production in the metagalaxy, Astrophys. J., 157, 507, 10.1086/150091 Fazio, 1970, Predicted high energy break in the isotropic gamma-ray spectrum: A test of cosmological origin, Nature, 226, 135, 10.1038/226135a0 Aartsen, 2013, First observation of pev-energy neutrinos with IceCube, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.021103 Schonert, 2009, Vetoing atmospheric neutrinos in a high energy neutrino telescope, Phys. Rev. D, 79, 10.1103/PhysRevD.79.043009 Gaisser, 2014, Generalized self-veto probability for atmospheric neutrinos, Phys. Rev. D, 90, 10.1103/PhysRevD.90.023009 Aartsen, 2013, Evidence for high-energy extraterrestrial neutrinos at the icecube detector, Science, 342 Aartsen, 2014, Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.101101 Aartsen, 2015, Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube, Phys. Rev. D, 91, 10.1103/PhysRevD.91.022001 M.G. Aartsen, et al. [IceCube Collaboration], The IceCube neutrino observatory contributions to ICRC 2017 Part II: Properties of the atmospheric and astrophysical neutrino flux, arXiv:1710.01191 [astro-ph.HE]. Aartsen, 2015, A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with icecube, Astrophys. J., 809, 98, 10.1088/0004-637X/809/1/98 Aartsen, 2015, Evidence for astrophysical muon neutrinos from the Northern sky with IceCube, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.081102 Aartsen, 2016, Observation and characterization of a cosmic muon neutrino flux from the Northern hemisphere using six years of IceCube data, Astrophys. J., 833, 3, 10.3847/0004-637X/833/1/3 Ahlers, 2017, IceCube: neutrinos and multi-messenger astronomy, PTEP, 2017, 12A105 Anchordoqui, 2014, Cosmic neutrino pevatrons: A brand new pathway to astronomy, strophysics, and particle physics, JHEAp, 1–2, 1 Ahlers, 2015, High-energy cosmic neutrino puzzle: a review, Rep. Progr. Phys., 78, 10.1088/0034-4885/78/12/126901 Meszaros, 2017, Astrophysical sources of high energy neutrinos in the IceCube era, Ann. Rev. Nucl. Part. Sci., 67, 45, 10.1146/annurev-nucl-101916-123304 Aartsen, 2017, Constraints on galactic neutrino emission with seven years of IceCube data, Astrophys. J., 849, 67, 10.3847/1538-4357/aa8dfb Anchordoqui, 2014, Pinning down the cosmic ray source mechanism with new IceCube data, Phys. Rev. D, 89, 10.1103/PhysRevD.89.083003 Neronov, 2014, PeV neutrinos from interactions of cosmic rays with the interstellar medium in the galaxy, Phys. Rev. D, 89, 10.1103/PhysRevD.89.103002 Anchordoqui, 2014, Estimating the contribution of galactic sources to the diffuse neutrino flux, Phys. Rev. D, 90, 10.1103/PhysRevD.90.123010 Neronov, 2016, Evidence the galactic contribution to the icecube astrophysical neutrino flux, Astropart. Phys., 75, 60, 10.1016/j.astropartphys.2015.11.002 Neronov, 2016, Galactic and extragalactic contributions to the astrophysical muon neutrino signal, Phys. Rev. D, 93, 10.1103/PhysRevD.93.123002 Neronov, 2018, Multi-messenger gamma-ray counterpart of the icecube neutrino signal, Phys. Rev. D, 98, 10.1103/PhysRevD.98.023004 Aartsen, 2016, Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, J. Cosmol. Astropart. Phys., 1601, 037 Aartsen, 2018, Neutrino emission from the direction of the blazar txs 0506+056 prior to the icecube-170922a alert, Science, 361, 147, 10.1126/science.aat2890 Ackermann, 2011, The second catalog of active galactic nuclei detected by the Fermi Large Area Telescope, Astrophys. J., 743, 171, 10.1088/0004-637X/743/2/171 Aartsen, 2017, The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux, Astrophys. J., 835, 45, 10.3847/1538-4357/835/1/45 Mena, 2014, Flavor composition of the high-energy neutrino events in icecube, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.091103 Chen, 2015, Two-component flux explanation for the high energy neutrino events at icecube, Phys. Rev. D, 92, 10.1103/PhysRevD.92.073001 Aartsen, 2015, Flavor ratio of astrophysical neutrinos above 35 TeV in IceCube, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.171102 Palomares-Ruiz, 2015, Spectral analysis of the high-energy icecube neutrinos, Phys. Rev. D, 91, 10.1103/PhysRevD.91.103008 Vincent, 2016, Analysis of the 4-year IceCube high-energy starting events, Phys. Rev. D, 94, 10.1103/PhysRevD.94.023009 Anchordoqui, 2017, Evidence for a break in the spectrum of astrophysical neutrinos, Phys. Rev. D, 95, 10.1103/PhysRevD.95.083009 Muzio, 2017, Detailed simulations of Fermi-LAT constraints on UHECR production scenarios, PoS ICRC, 2017, 557 Kachelriess, 2017, Minimal model for extragalactic cosmic rays and neutrinos, Phys. Rev. D, 96, 10.1103/PhysRevD.96.083006 Abbott, 2016, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.061102 Abbott, 2016, Properties of the binary black hole merger GW150914, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.241102 Abbott, 2016, GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.241103 Abbott, 2016, Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X, 6 Kotera, 2016, Ultra-high energy cosmic rays and black hole mergers, Astrophys. J., 823, L29, 10.3847/2041-8205/823/2/L29 Murase, 2016, Ultrafast outflows from black hole mergers with a minidisk, Astrophys. J., 822, L9, 10.3847/2041-8205/822/1/L9 Anchordoqui, 2016, Neutrino lighthouse powered by Sagittarius A∗ disk dynamo, Phys. Rev. D, 94, 10.1103/PhysRevD.94.023010 Aab, 2016, Ultra-high-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory, Phys. Rev. D, 94, 10.1103/PhysRevD.94.122007 Abbott, 2017, GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.161101 Abbott, 2017, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J., 848, L13, 10.3847/2041-8213/aa920c Coulter, 2017, Swope supernova survey 2017a (SSS17a), the optical counterpart to a gravitational wave source, Science, 358, 1556, 10.1126/science.aap9811 Soares-Santos, 2017, The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817 I: Discovery of the optical counterpart using the Dark Energy Camera, Astrophys. J., 848, L16, 10.3847/2041-8213/aa9059 Valenti, 2017, The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck, Astrophys. J., 848, L24, 10.3847/2041-8213/aa8edf Arcavi, 2017, Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger, Nature, 551, 64, 10.1038/nature24291 Lipunov, 2017, MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817, Astrophys. J., 850, L1, 10.3847/2041-8213/aa92c0 Tanvir, 2017, The emergence of a Lanthanide-Rich kilonova following the merger of two neutron stars, Astrophys. J., 848, L27, 10.3847/2041-8213/aa90b6 Pian, 2017, Spectroscopic identification of r-process nucleosynthesis in a double neutron star merger, Nature, 551, 67, 10.1038/nature24298 Troja, 2017, The X-ray counterpart to the gravitational wave event GW 170817, Nature, 551, 71, 10.1038/nature24290 Haggard, 2017, A deep Chandra X-ray study of neutron star coalescence GW170817, Astrophys. J., 848, L25, 10.3847/2041-8213/aa8ede Hallinan, 2017, A radio counterpart to a neutron star merger, Science, 358, 1579, 10.1126/science.aap9855 Kasliwal, 2017, Illuminating gravitational waves: A concordant picture of photons from a neutron star merger, Science, 358, 1559, 10.1126/science.aap9455 Li, 1998, Transient events from neutron star mergers, Astrophys. J., 507, L59, 10.1086/311680 Metzger, 2010, Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei, Mon. Not. R. Astron. Soc., 406, 2650, 10.1111/j.1365-2966.2010.16864.x Albert, 2017, Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, Astrophys. J., 850, L35, 10.3847/2041-8213/aa9aed Biehl, 2018, Expected neutrino fluence from short gamma-ray burst 170817A and off-axis angle constraints, Mon. Not. R. Astron. Soc., 476, 1191, 10.1093/mnras/sty285 X. Rodrigues, D. Biehl, D. Boncioli, A.M. Taylor, Binary neutron star merger remnants as sources of cosmic rays below the ankle, arXiv:1806.01624 [astro-ph.HE]. Capella, 1994, Dual parton model, Phys. Rep., 236, 225, 10.1016/0370-1573(94)90064-7 E. Predazzi, Diffraction: past, present and future, arXiv:hep-ph/9809454. Cline, 1973, High transverse momentum secondaries and rising total cross-sections in cosmic ray interactions, Phys. Rev. Lett., 31, 491, 10.1103/PhysRevLett.31.491 Ellis, 1974, Implications of parton model concepts for large transverse momentum production of hadrons, Phys. Rev. D, 9, 2027, 10.1103/PhysRevD.9.2027 Halzen, 1975, High transverse momentum secondaries in cosmic ray interactions up to 10,000,000GeV, Nuclear Phys. B, 92, 404, 10.1016/S0550-3213(75)80005-8 Pancheri, 1984, Events of very high-energy density at the CERN Spp̄S Collider, Nuclear Phys. A, 418, 117C, 10.1016/0375-9474(84)90546-3 Gaisser, 1985, Soft hard scattering in the TeV range, Phys. Rev. Lett., 54, 1754, 10.1103/PhysRevLett.54.1754 Dias de Deus, 1985, Semihard physics at the SPS pp̄ Colliders?, Nuclear Phys. B, 252, 369, 10.1016/0550-3213(85)90452-3 Pancheri, 1985, Jets in minimum bias physics, Phys. Lett. B, 159, 69, 10.1016/0370-2693(85)90121-2 Pancheri, 1986, Low pT jets and the rise with energy of the inelastic cross-section, Phys. Lett. B, 182, 199, 10.1016/0370-2693(86)91577-7 Albajar, 1988, Production of low transverse energy clusters in pp̄ collisions at s=0.2 TeV to 0.9 TeV and their interpretation in terms of QCD jets, Nuclear Phys. B, 309, 405, 10.1016/0550-3213(88)90450-6 Gribov, 1972, e+e− pair annihilation and deep inelastic ep scattering in perturbation theory, Yad. Fiz., 15, 1218 Gribov, 1972, Deep inelastic ep scattering in perturbation theory, Yad. Fiz., 15, 781 Dokshitzer, 1977, Calculation of the structure functions for deep inelastic scattering and e+e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys.—JETP, 46, 641 Altarelli, 1977, Asymptotic freedom in parton language, Nuclear Phys. B, 126, 298, 10.1016/0550-3213(77)90384-4 M. Dittmar, et al. Parton distributions, arXiv:0901.2504 [hep-ph]. Engel, 2003, Models of primary interactions, Nuclear Phys. Proc. Suppl., 122, 40, 10.1016/S0920-5632(03)80362-6 L. Anchordoqui, F. Halzen, Lessons in particle physics, arXiv:0906.1271. Kwiecinski, 1991, Semihard QCD expectations for pp̄ scattering at CERN, Tevatron and SSC colliders, Phys. Rev. D, 43, 1560, 10.1103/PhysRevD.43.1560 Dias de Deus, 1987, Semihard QCD: minijets and elastic scattering, Phys. Lett. B, 196, 537, 10.1016/0370-2693(87)90816-1 Dias De Deus, 1973, Geometric scaling multiplicity distributions and cross-sections, Nuclear Phys. B, 59, 231, 10.1016/0550-3213(73)90485-9 Amaldi, 1980, Impact parameter interpretation of proton proton scattering from a critical review of all ISR data, Nuclear Phys. B, 166, 301, 10.1016/0550-3213(80)90229-1 Castaldi, 1983, Elastic scattering and total cross-section at very high-energies, Ann. Rev. Nucl. Part. Sci., 35, 351, 10.1146/annurev.ns.35.120185.002031 Block, 1985, High-energy pp̄ and pp forward elastic scattering and total cross-sections, Rev. Modern Phys., 57, 563, 10.1103/RevModPhys.57.563 Glauber, 1970, High-energy scattering of protons by nuclei, Nuclear Phys. B, 21, 135, 10.1016/0550-3213(70)90468-2 L’Heureux, 1985, Quark-gluon model for diffraction at high-energies, Phys. Rev. D, 32, 1681, 10.1103/PhysRevD.32.1681 Durand, 1987, QCD and rising cross sections, Phys. Rev. Lett., 58, 303, 10.1103/PhysRevLett.58.303 Durand, 1988, High-energy nucleon nucleus scattering and cosmic ray cross-sections, Phys. Rev. D, 38, 78, 10.1103/PhysRevD.38.78 Gaisser, 1989, Minijets in minimum bias events, Phys. Lett. B, 219, 375, 10.1016/0370-2693(89)90407-3 Fletcher, 1994, SIBYLL: An event generator for simulation of high-energy cosmic ray cascades, Phys. Rev. D, 50, 5710, 10.1103/PhysRevD.50.5710 Kalmykov, 1997, Quark-gluon string model and EAS simulation problems at ultra-high energies, Nuclear Phys. Proc. Suppl., 52B, 17, 10.1016/S0920-5632(96)00846-8 Alvarez-Muniz, 2002, Hybrid simulations of extensive air showers, Phys. Rev. D, 66, 10.1103/PhysRevD.66.033011 Froissart, 1961, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev., 123, 1053, 10.1103/PhysRev.123.1053 Ahn, 2009, Cosmic ray interaction event generator SIBYLL 2.1, Phys. Rev. D, 80, 10.1103/PhysRevD.80.094003 Sjostrand, 1988, Status of fragmentation models, Internat. J. Modern Phys. A, 3, 751, 10.1142/S0217751X88000345 Engel, 1992, Nucleus–nucleus collisions and interpretation of cosmic ray cascades, Phys. Rev. D, 46, 5013, 10.1103/PhysRevD.46.5013 Belov, 2006, p-air cross-section measurement at 1018.5 eV, Nuclear Phys. Proc. Suppl., 151, 197, 10.1016/j.nuclphysbps.2005.07.035 Block, 1999, Predicting proton air cross sections at s≈30TeV, using accelerator and cosmic ray data, Phys. Rev. Lett., 83, 4926, 10.1103/PhysRevLett.83.4926 Block, 2007, Ultra-high energy predictions of proton-air cross sections from accelerator data, Phys. Rev. D, 76, 10.1103/PhysRevD.76.111503 Baltrusaitis, 1984, Total proton proton cross-section at s=30 TeV, Phys. Rev. Lett., 52, 1380, 10.1103/PhysRevLett.52.1380 Honda, 1993, Inelastic cross-section for p-air collisions from air shower experiment and total cross-section for pp collisions at SSC energy, Phys. Rev. Lett., 70, 525, 10.1103/PhysRevLett.70.525 S.P. Knurenko, V.R. Sleptsova, I.E. Sleptsov, N.N. Kalmykov, S.S. Ostapchenko, Longitudinal EAS development at E0=1018 eV to 3×1019 eV and the QGSJET model, in: Proceedings of 26th International Cosmic Ray Conference, Salt Lake City, Utah, vol. 1, 1999, p. 372. Aglietta, 2009, Measurement of the proton-air inelastic cross section at s≈2TeV from the EAS-TOP experiment, Phys. Rev. D, 79, 10.1103/PhysRevD.79.032004 Aielli, 2009, Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment, Phys. Rev. D, 80, 10.1103/PhysRevD.80.092004 Mielke, 1994, Cosmic ray hadron flux at sea level up to 15 TeV, J. Phys. G, 20, 637, 10.1088/0954-3899/20/4/010 M.N. Dyakonov, et al. Parameters of hadron interactions at E0>1017 eV on EAS development fluctuation data, in: Proceedings of 21st International Cosmic Ray Conference, Adelaide, Australia, vol. 9, 1990, p. 252. R.A. Nam, S.I. Nikolsky, V.P. Pavlyuchenko, A.P. Chubenko, V.I. Yakovlev, Investigation of nucleon-nuclei of air cross-section at energy greater than 10 TeV, in: Proceedings of 14th International Cosmic Ray Conference, Munich, Germany, vol. 7, 1975, p. 2258. Abreu, 2012, Measurement of the proton-air cross-section at s=57 TeV with the pierre auger observatory, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.062002 Abbasi, 2015, Measurement of the proton-air cross section with Telescope Array’s Middle Drum detector and surface array in hybrid mode, Phys. Rev. D, 92, 10.1103/PhysRevD.92.032007 d’Enterria, 2011, Constraints from the first lhc data on hadronic event generators for ultra-high energy cosmic-ray physics, Astropart. Phys., 35, 98, 10.1016/j.astropartphys.2011.05.002 Barbosa, 2004, Determination of the calorimetric energy in extensive air showers, Astropart. Phys., 22, 159, 10.1016/j.astropartphys.2004.06.007 Mccomb, 1979, Photoproduction in large cosmic ray showers, J. Phys. G, 5, 1613, 10.1088/0305-4616/5/11/016 Rossi, 1941, Cosmic-ray theory, Rev. Modern Phys., 13, 240, 10.1103/RevModPhys.13.240 Bethe, 1934, On the stopping of fast particles and on the creation of positive electrons, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 146, 83 Rossi, 1952 Weast, 1981 Tsai, 1974, Pair production and bremsstrahlung of charged leptons, Rev. Modern Phys., 46, 815, 10.1103/RevModPhys.46.815 Stanev, 1982, Development of ultra-high-energy electromagnetic cascades in water and lead including the Landau-Pomeranchuk-Migdal effect, Phys. Rev. D, 25, 1291, 10.1103/PhysRevD.25.1291 Cillis, 1999, Influence of the LPM effect and dielectric suppression on particle air showers, Phys. Rev. D, 59, 10.1103/PhysRevD.59.113012 Vankov, 2003, Ultra-high energy gamma rays in geomagnetic field and atmosphere, Phys. Rev. D, 67, 10.1103/PhysRevD.67.043002 Cillis, 2001, Extended air showers and muon interactions, Phys. Rev. D, 64, 10.1103/PhysRevD.64.013010 Anchordoqui, 2004, Footprints of superGZK cosmic rays in the Pilliga State Forest, Phys. Lett. B, 583, 213, 10.1016/j.physletb.2003.12.072 Heitler, 1944 J. Linsley, Structure of large air showers at depth 834 g/cm2: Applications, in: Proceedings of 15th International Cosmic Ray Conference, Plovdiv, Bulgaria, vol. 12, 1977, p. 89. Matthews, 2005, A heitler model of extensive air showers, Astropart. Phys., 22, 387, 10.1016/j.astropartphys.2004.09.003 Ulrich, 2009, On the measurement of the proton-air cross section using air shower data, New J. Phys., 11, 10.1088/1367-2630/11/6/065018 Abu-Zayyad, 2000, Evidence for changing of cosmic ray composition between 1017 eV and 1018 eV from multicomponent measurements, Phys. Rev. Lett., 84, 4276, 10.1103/PhysRevLett.84.4276 Aab, 2015, Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events, Phys. Rev. D, 91, 10.1103/PhysRevD.91.032003 Abbasi, 2018, Study of muons from ultrahigh energy cosmic ray air showers measured with the Telescope Array experiment, Phys. Rev. D, 98, 10.1103/PhysRevD.98.022002 Farrar, 2013, A new physical phenomenon in ultrahigh energy collisions, EPJ Web Conf., 53, 07007, 10.1051/epjconf/20135307007 Anchordoqui, 2017, Strange fireball as an explanation of the muon excess in Auger data, Phys. Rev. D, 95, 10.1103/PhysRevD.95.063005 Tomar, 2017, Lorentz invariance violation as an explanation of the muon excess in Auger data, Phys. Rev. D, 95, 10.1103/PhysRevD.95.095035 Soriano, 2018, Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays, PoS ICRC, 2017, 342 Knapp, 2003, Extensive air shower simulations at the highest energies, Astropart. Phys., 19, 77, 10.1016/S0927-6505(02)00187-1 Ulrich, 2011, Hadronic multiparticle production at ultra-high energies and extensive air showers, Phys. Rev. D, 83, 10.1103/PhysRevD.83.054026 Lemaitre, 1931, Republication of: The beginning of the world from the point of view of quantum theory, Nature, 127, 706, 10.1038/127706b0 Hill, 1983, Monopolonium, Nuclear Phys. B, 224, 469, 10.1016/0550-3213(83)90386-3 Chudnovsky, 1986, Superconducting cosmic strings, Phys. Rev. D, 34, 944, 10.1103/PhysRevD.34.944 Hill, 1987, Ultra-high-energy cosmic rays from superconducting cosmic strings, Phys. Rev. D, 36, 1007, 10.1103/PhysRevD.36.1007 Bhattacharjee, 1989, Cosmic strings and ultra-high-energy cosmic rays, Phys. Rev. D, 40, 3968, 10.1103/PhysRevD.40.3968 Bhattacharjee, 1990, Ultra-high-energy particle flux from cosmic strings, Phys. Lett. B, 246, 365, 10.1016/0370-2693(90)90615-D Bhattacharjee, 1992, Grand unified theories topological defects and ultra-high-energy cosmic rays, Phys. Rev. Lett., 69, 567, 10.1103/PhysRevLett.69.567 Bhattacharjee, 1995, Monopole annihilation and highest energy cosmic rays, Phys. Rev. D, 51, 4079, 10.1103/PhysRevD.51.4079 Berezinsky, 1997, High energy particles from monopoles connected by strings, Phys. Rev. D, 56, 2024, 10.1103/PhysRevD.56.2024 Berezinsky, 1997, Cosmic necklaces and ultrahigh energy cosmic rays, Phys. Rev. Lett., 79, 5202, 10.1103/PhysRevLett.79.5202 Bhattacharjee, 2000, Origin and propagation of extremely high-energy cosmic rays, Phys. Rep., 327, 109, 10.1016/S0370-1573(99)00101-5 Kuzmin, 1998, Ultra-high-energy cosmic rays: A window on postinflationary reheating epoch of the universe?, Phys. Atom. Nucl., 61, 1028 Kuzmin, 1998, Ultrahigh-energy cosmic rays superheavy long living particles, and matter creation after inflation, JETP Lett., 68, 271, 10.1134/1.567858 Dubovsky, 1998, Galactic anisotropy as signature of CDM related ultrahigh-energy cosmic rays, JETP Lett., 68, 107, 10.1134/1.567830 Berezinsky, 1998, Limiting SUSY QCD spectrum and its application for decays of superheavy particles, Phys. Lett. B, 434, 61, 10.1016/S0370-2693(98)00728-X Birkel, 1998, Extremely high-energy cosmic rays from relic particle decays, Astropart. Phys., 9, 297, 10.1016/S0927-6505(98)00028-0 Sarkar, 2002, The high-energy cosmic ray spectrum from relic particle decay, Nuclear Phys. B, 621, 495, 10.1016/S0550-3213(01)00565-X Kuzmin, 1999, Ultrahigh-energy cosmic rays and inflation relics, Phys. Rep., 320, 199, 10.1016/S0370-1573(99)00064-2 Hamaguchi, 1998, Superheavy dark matter with discrete gauge symmetries, Phys. Rev. D, 58, 10.1103/PhysRevD.58.103503 Hamaguchi, 1999, Long lived superheavy dark matter with discrete gauge symmetries, Phys. Rev. D, 59, 10.1103/PhysRevD.59.063507 Hamaguchi, 1999, Long-lived superheavy particles in dynamical supersymmetry-breaking models in supergravity, Phys. Rev. D, 60, 10.1103/PhysRevD.60.125009 Ellis, 1990, Confinement of fractional charges yields integer charged relics in string models, Phys. Lett. B, 247, 257, 10.1016/0370-2693(90)90893-B Benakli, 1999, Natural candidates for superheavy dark matter in string and M theory, Phys. Rev. D, 59, 10.1103/PhysRevD.59.047301 Berezinsky, 1997, Ultra-high-energy cosmic rays without GZK cutoff, Phys. Rev. Lett., 79, 4302, 10.1103/PhysRevLett.79.4302 Blasi, 2002, Ultrahigh-energy cosmic rays from annihilation of superheavy dark matter, Astropart. Phys., 18, 57, 10.1016/S0927-6505(02)00113-5 Coriano, 2002, SUSY QCD and high energy cosmic rays I: Fragmentation functions of SUSY QCD, Phys. Rev. D, 65, 10.1103/PhysRevD.65.075001 Barbot, 2003, Detailed analysis of the decay spectrum of a super-heavy x particle, Astropart. Phys., 20, 5, 10.1016/S0927-6505(03)00134-8 Barbot, 2004, Decay of super-heavy particles: user guide of the SHdecay program, Comput. Phys. Comm., 157, 63, 10.1016/S0010-4655(03)00469-7 Aharonian, 1992, Photon/proton ratio as a diagnostic tool for topological defects as the sources of extremely high-energy cosmic rays, Phys. Rev. D, 46, 4188, 10.1103/PhysRevD.46.4188 Sigl, 1999, Probing grand unified theories with cosmic ray, gamma-ray and neutrino astrophysics, Phys. Rev. D, 59 Sigl, 1995, Helium photodisintegration and nucleosynthesis: Implications for topological defects, high-energy cosmic rays, and massive black holes, Phys. Rev. D, 52, 6682, 10.1103/PhysRevD.52.6682 Sigl, 1997, Cosmological neutrino signatures for grand unification scale physics, Phys. Lett. B, 392, 129, 10.1016/S0370-2693(96)01534-1 Protheroe, 1996, Limits on models of the ultrahigh energy cosmic rays based on topological defects, Phys. Rev. Lett., 77, 3708, 10.1103/PhysRevLett.77.3708 Protheroe, 1997, Limits on models of the ultrahigh energy cosmic rays based on topological defects, Phys. Rev. Lett., 78, 3420, 10.1103/PhysRevLett.78.3420 Protheroe, 1996, Are topological defects responsible for the 300-EeV cosmic rays?, Nuclear Phys. Proc. Suppl., 48, 485, 10.1016/0920-5632(96)00299-X Sreekumar, 1998, EGRET observations of the extragalactic gamma-ray emission, Astrophys. J., 494, 523, 10.1086/305222 Berezinsky, 1998, Ultra-high-energy gamma-rays as signature of topological defects, Phys. Rev. D, 58, 10.1103/PhysRevD.58.103515 Abdo, 2010, The spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.101101 Berezinsky, 2011, Restricting UHECRs and cosmogenic neutrinos with Fermi-LAT, Phys. Lett. B, 695, 13, 10.1016/j.physletb.2010.11.019 Ackermann, 2015, The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, Astrophys. J., 799, 86, 10.1088/0004-637X/799/1/86 Berezinsky, 2016, High energy electromagnetic cascades in extragalactic space: physics and features, Phys. Rev. D, 94, 10.1103/PhysRevD.94.023007 Berezinsky, 2011, Extremely high energy neutrinos from cosmic strings, Phys. Rev. D, 84, 10.1103/PhysRevD.84.085006 Weiler, 1982, Resonant absorption of cosmic ray neutrinos by the relic neutrino background, Phys. Rev. Lett., 49, 234, 10.1103/PhysRevLett.49.234 Weiler, 1999, Cosmic ray neutrino annihilation on relic neutrinos revisited: A mechanism for generating air showers above the Greisen-Zatsepin-Kuzmin cutoff, Astropart. Phys., 11, 303, 10.1016/S0927-6505(98)00068-1 Fargion, 1999, Ultra-high-energy neutrino scattering onto relic light neutrinos in galactic halo as a possible source of highest energy extragalactic cosmic rays, Astrophys. J., 517, 725, 10.1086/307203 Aloisio, 2015, Super heavy dark matter in light of BICEP2, Planck and ultra high energy cosmic ray observations, J. Cosmol. Astropart. Phys., 1508, 024, 10.1088/1475-7516/2015/08/024 Christiansen, 2011, Search for cosmic strings in the COSMOS survey, Phys. Rev. D, 83, 10.1103/PhysRevD.83.122004 van Haasteren, 2011, Placing limits on the stochastic gravitational-wave background using European pulsar timing array data, Mon. Not. R. Astron. Soc., 414, 3117, 10.1111/j.1365-2966.2011.18613.x Damour, 2005, Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows, Phys. Rev. D, 71, 10.1103/PhysRevD.71.063510 Olmez, 2010, Gravitational-wave stochastic background from kinks and cusps on cosmic ctrings, Phys. Rev. D, 81, 10.1103/PhysRevD.81.104028 L. Boyle, K. Finn, N. Turok, CPT symmetric universe, arXiv:1803.08928 [hep-ph]. L. Boyle, K. Finn, N. Turok, The Big Bang, CPT, and neutrino dark matter, arXiv:1803.08930 [hep-ph]. M.G. Aartsen, et al. [IceCube Collaboration], Search for neutrinos from decaying dark matter with IceCube, arXiv:1804.03848 [astro-ph.HE]. Gorham, 2006, The antarctic impulsive transient Antenna ultra-high energy neutrino detector design, performance, and sensitivity for 2006–2007 balloon flight, Astropart. Phys., 32, 10, 10.1016/j.astropartphys.2009.05.003 Gorham, 2018, Constraints on the diffuse high-energy neutrino flux from the third flight of ANITA, Phys. Rev. D, 98, 10.1103/PhysRevD.98.022001 Gorham, 2016, Characteristics of four upward-pointing cosmic-ray-like events observed with ANITA, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.071101 P.W. Gorham, et al. [ANITA Collaboration], Observation of an unusual upward-going cosmic-ray-like event in the third flight of ANITA, arXiv:1803.05088 [astro-ph.HE]. Anchordoqui, 2018, Upgoing ANITA events as evidence of the CPT symmetric universe, LHEP, 1, 13, 10.31526/LHEP.1.2018.03 Patterson, 1955, Age of the earth, Science, 121, 69, 10.1126/science.121.3134.69 Bienaymé, 2014, Weighing the local dark matter with RAVE red clump stars, Astron. Astrophys., 571, 92, 10.1051/0004-6361/201424478 Piffl, 2014, Constraining the Galaxy’s dark halo with RAVE stars, Mon. Not. R. Astron. Soc., 445, 3133, 10.1093/mnras/stu1948 McKee, 2015, Stars, gas, and dark matter in the solar neighborhood, Astrophys. J., 814, 13, 10.1088/0004-637X/814/1/13 S. Sivertsson, H. Silverwood, J.I. Read, G. Bertone, P. Steger, The local dark matter density from SDSS-SEGUE G-dwarfs, Mon. Not. Roy. Astron. Soc. http://dx.doi.org/10.1093/mnras/sty977. D.A. Neufeld, G.R. Farrar, C.F. McKee, Dark matter that interacts with baryons: density distribution within the Earth and new constraints on the interaction cross-section, arXiv:1805.08794 [astro-ph.CO]. J.H. Adams, et al. White paper on EUSO-SPB2, 2017, arXiv:1703.04513 [astro-ph.HE]. Rédei, 1966, Possible experimental test of the existence of a universal length, Phys. Rev., 145, 999, 10.1103/PhysRev.145.999 Rédei, 1967, Validity of special relativity at small distances and the velocity dependence of the muon lifetime, Phys. Rev., 162, 1299, 10.1103/PhysRev.162.1299 Anchordoqui, 1997, Possible test of local Lorentz invariance from tau decays, Z. Phys. C, 73, 465, 10.1007/s002880050336 Coleman, 1999, High-energy tests of Lorentz invariance, Phys. Rev. D, 59, 10.1103/PhysRevD.59.116008 S.R. Coleman, S.L. Glashow, Evading the GZK cosmic ray cutoff, arXiv:hep-ph/9808446. Aloisio, 2000, Probing the structure of space–time with cosmic rays, Phys. Rev. D, 62, 10.1103/PhysRevD.62.053010 Jankiewicz, 2004, Space–time foam and cosmic ray interactions, Astropart. Phys., 21, 651, 10.1016/j.astropartphys.2004.04.008 Galaverni, 2008, Lorentz violation in the photon sector and ultrahigh-energy cosmic rays, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.021102 Galaverni, 2008, Lorentz violation and ultrahigh-energy photons, Phys. Rev. D, 78, 10.1103/PhysRevD.78.063003 Mattingly, 2010, Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation, J. Cosmol. Astropart. Phys., 1002, 007, 10.1088/1475-7516/2010/02/007 Bietenholz, 2011, Cosmic rays and the search for a Lorentz invariance violation, Phys. Rep., 505, 145, 10.1016/j.physrep.2011.04.002 Stecker, 2017, Testing Lorentz symmetry using high energy astrophysics observations, Symmetry, 9, 201, 10.3390/sym9100201 Scully, 2009, Lorentz invariance violation and the observed spectrum of ultra-high energy cosmic rays, Astropart. Phys., 31, 220, 10.1016/j.astropartphys.2009.01.002 Stecker, 2009, Searching for new physics with ultra-high energy cosmic rays, New J. Phys., 11, 10.1088/1367-2630/11/8/085003 Saveliev, 2011, Lorentz invariance violation and chemical composition of ultra-high-energy cosmic rays, J. Cosmol. Astropart. Phys., 1103, 046, 10.1088/1475-7516/2011/03/046 Anchordoqui, 2018, New test of Lorentz symmetry using ultra-high-energy cosmic rays, Phys. Rev. D, 97, 10.1103/PhysRevD.97.043010 Boncioli, 2016, Future prospects of testing Lorentz invariance with UHECRs, PoS ICRC, 2015, 521 V. Pavlidou, T. Tomaras, What do the highest-energy cosmic-ray data suggest about possible new physics around 50 TeV? arXiv:1802.04806 [astro-ph.HE]. Kusenko, 2002, Neutrino cross-sections at high-energies and the future observations of ultrahigh-energy cosmic rays, Phys. Rev. Lett., 88, 10.1103/PhysRevLett.88.161101 Anchordoqui, 2002, Black holes from cosmic rays: Probes of extra dimensions and new limits on TeV scale gravity, Phys. Rev. D, 65, 10.1103/PhysRevD.65.124027 Anchordoqui, 2006, IceHEP high energy physics at the south pole, Ann. Physics, 321, 2660, 10.1016/j.aop.2005.11.015 Anchordoqui, 2006, Exotic neutrino interactions at the Pierre Auger Observatory, Astropart. Phys., 25, 14, 10.1016/j.astropartphys.2005.10.006 Anchordoqui, 2010, Using cosmic neutrinos to search for non-perturbative physics at the Pierre Auger Observatory, Phys. Rev. D, 82, 10.1103/PhysRevD.82.043001 Palomares-Ruiz, 2006, Acceptances for space-based and ground-based fluorescence detectors, and inference of the neutrino-nucleon cross-section above 1019 eV, Phys. Rev. D, 73, 10.1103/PhysRevD.73.083003 Olinto, 2017, POEMMA: probe of extreme multi-messenger astrophysics, PoS ICRC, 2017, 542 Stecker, 2004, Observing the ultra-high-energy universe with OWL eyes, Nuclear Phys. Proc. Suppl., 136C, 433, 10.1016/j.nuclphysbps.2004.10.027 Neronov, 2017, Sensitivity of a proposed space-based cherenkov astrophysical-neutrino telescope, Phys. Rev. D, 95, 10.1103/PhysRevD.95.023004 Cowan, 2011, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C, 71, 1554, 10.1140/epjc/s10052-011-1554-0 R.D. Cousins, Lectures on statistics in theory: Prelude to statistics in practice, arXiv:1807.05996 [physics.data-an]. Wilks, 1938, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist., 9, 60, 10.1214/aoms/1177732360 Deligny, 2019, Measurements and implications of cosmic ray anisotropies from TeV to trans-EeV energies, Astropart. Phys., 104, 13, 10.1016/j.astropartphys.2018.08.005