Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction

Journal of Materials Chemistry A - Tập 5 Số 29 - Trang 15080-15086
Yuanju Qu1,2,3,4,5, Mengmeng Shao3,4,5,6, Yangfan Shao7,8,3,4,5, Mingyang Yang3,4,5,9,10, Jincheng Xu3,4,5,6, Chi Tat Kwok1,2,3,4,5, Xingqiang Shi11,8,12,13, Zhouguang Lu14,5,15,10,13, Hui Pan3,4,5,6
1Department of Electromechanical Engineering
2Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, P. R. China
3Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, P. R. China
4Macao SAR
5P. R. China
6University of Macau
7Department of Physics
8Department of Physics, Southern University of Science and Technology, Shenzhen, China
9Shenzhen Key Laboratory of Hydrogen Energy
10Shenzhen Key Laboratory of Hydrogen Energy, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
11China
12Shenzhen
13Southern University of Science and Technology
14Department of Materials Science and Engineering
15Shenzhen 518055

Tóm tắt

It is a great challenge to explore cheap, abundant and eco-friendly electrocatalysts for hydrogen evolution reaction (HER).

Từ khóa


Tài liệu tham khảo

Turner, 2004, Science, 305, 972, 10.1126/science.1103197

Tan, 2015, ACS Catal., 5, 2376, 10.1021/cs501840c

Zeng, 2014, Energy Environ. Sci., 7, 797, 10.1039/C3EE42620C

Cao, 2014, Nano Energy, 9, 301, 10.1016/j.nanoen.2014.08.008

Huang, 2011, Nat. Nanotechnol., 6, 28, 10.1038/nnano.2010.235

Constantinou, 2012, Appl. Catal., B, 117, 81, 10.1016/j.apcatb.2012.01.005

Koppatz, 2009, Fuel Process. Technol., 90, 914, 10.1016/j.fuproc.2009.03.016

Voiry, 2016, Adv. Mater., 28, 6197, 10.1002/adma.201505597

Lu, 2016, Adv. Mater., 28, 1917, 10.1002/adma.201503270

Deng, 2016, J. Mater. Chem. A, 4, 59, 10.1039/C5TA05453B

Wang, 2015, Nanoscale, 7, 19764, 10.1039/C5NR06718A

Gao, 2017, ACS Catal., 7, 494, 10.1021/acscatal.6b02754

Lim, 2015, ACS Nano, 9, 8474, 10.1021/acsnano.5b03357

Yu, 2016, Adv. Mater., 28, 9006, 10.1002/adma.201601188

Yu, 2016, Adv. Mater., 28, 92, 10.1002/adma.201504024

Wu, 2015, Nat. Commun., 6, 6512, 10.1038/ncomms7512

Ma, 2015, Angew. Chem., Int. Ed., 54, 15395, 10.1002/anie.201508715

Pan, 2016, Sci. Rep., 6, 32531, 10.1038/srep32531

Yan, 2017, J. Mater. Chem. A, 5, 10173, 10.1039/C6TA11041J

Xing, 2017, J. Mater. Chem. A, 5, 7744, 10.1039/C7TA01907F

Chen, 2017, J. Mater. Chem. A, 5, 8187, 10.1039/C7TA00816C

Kumar, 2017, J. Mater. Chem. A, 5, 7764, 10.1039/C7TA01815K

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Bollinger, 2001, Phys. Rev. Lett., 87, 196803, 10.1103/PhysRevLett.87.196803

Li, 2017, ACS Catal., 7, 877, 10.1021/acscatal.6b02663

Huang, 2016, J. Mater. Chem. A, 4, 14577, 10.1039/C6TA06174E

Zhang, 2015, ACS Appl. Mater. Interfaces, 7, 12193, 10.1021/acsami.5b02586

Tsai, 2014, Phys. Chem. Chem. Phys., 16, 13156, 10.1039/C4CP01237B

Fan, 2014, J. Mater. Chem. A, 2, 20545, 10.1039/C4TA05257A

Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685

Kong, 2013, Nano Lett., 13, 1341, 10.1021/nl400258t

Yang, 2016, ACS Appl. Mater. Interfaces, 8, 31702, 10.1021/acsami.6b11298

Tang, 2016, ACS Catal., 6, 4953, 10.1021/acscatal.6b01211

Qu, 2016, Sci. Rep., 6, 34186, 10.1038/srep34186

Ambrosi, 2015, Chem. Commun., 51, 8450, 10.1039/C5CC00803D

Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s

Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

Wang, 2017, J. Alloys Compd., 691, 698, 10.1016/j.jallcom.2016.08.305

Qi, 2017, Electrochim. Acta, 224, 593, 10.1016/j.electacta.2016.12.097

Gao, 2017, Electrochim. Acta, 224, 412, 10.1016/j.electacta.2016.12.070

Qu, 2015, ACS Appl. Mater. Interfaces, 7, 14170, 10.1021/acsami.5b02753

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Pan, 2016, Nanoscale Res. Lett., 11, 113, 10.1186/s11671-016-1329-5

Fan, 2016, J. Phys. Chem. C, 120, 1623, 10.1021/acs.jpcc.5b10709

Qu, 2015, Nanoscale Res. Lett., 10, 480, 10.1186/s11671-015-1182-y

Qu, 2015, Phys. Chem. Chem. Phys., 17, 24820, 10.1039/C5CP04118J

Pan, 2014, Sci. Rep., 4, 5348, 10.1038/srep05348

An, 2017, Nano Lett., 17, 368, 10.1021/acs.nanolett.6b04324

Liang, 2016, Chem. Mater., 28, 5587, 10.1021/acs.chemmater.6b01963

Yuan, 2015, Adv. Mater., 27, 5605, 10.1002/adma.201502075

Kresse, 1996, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

Kresse, 1999, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758

Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Hohenberg, 1964, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864

Blochl, 1994, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953

Monkhorst, 1976, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188

Qu, 2017, ACS Appl. Mater. Interfaces, 9, 5959, 10.1021/acsami.6b13244

Liu, 2015, J. Inorg. Mater., 30, 1339, 10.15541/jim20150345

Kumar, 2016, Sci. Rep., 6, 37699, 10.1038/srep37699

Jin, 2014, J. Mater. Chem. A, 2, 18593, 10.1039/C4TA04434G

Zou, 2015, Chem. Soc. Rev., 44, 5148, 10.1039/C4CS00448E

Hu, 2015, J. Power Sources, 294, 120, 10.1016/j.jpowsour.2015.06.049