Ulcerative colitis: understanding its cellular pathology could provide insights into novel therapies
Tóm tắt
Dynamic interactions between the gastrointestinal epithelium and the mucosal immune system normally contribute to ensuring intestinal homeostasis and optimal immunosurveillance, but destabilisation of these interactions in genetically predisposed individuals can lead to the development of chronic inflammatory diseases. Ulcerative colitis is one of the main types of inflammatory diseases that affect the bowel, but its pathogenesis has yet to be completely defined. Several genetic factors and other inflammation-related genes are implicated in mediating the inflammation and development of the disease. Some susceptibility loci associated with increased risk of ulcerative colitis are found to be implicated in mucosal barrier function. Different biomarkers that cause damage to the colonic mucosa can be detected in patients, including perinuclear ANCA, which is also useful in distinguishing ulcerative colitis from other colitides. The choice of treatment for ulcerative colitis depends on disease severity. Therapeutic strategies include anti-tumour necrosis factor alpha (TNF-α) monoclonal antibodies used to block the production of TNF-α that mediates intestinal tract inflammation, an anti-adhesion drug that prevents lymphocyte infiltration from the blood into the inflamed gut, inhibitors of JAK1 and JAK3 that suppress the innate immune cell signalling and interferons α/β which stimulate the production of anti-inflammatory cytokines, as well as faecal microbiota transplantation. Although further research is still required to fully dissect the pathophysiology of ulcerative colitis, understanding its cellular pathology and molecular mechanisms has already proven beneficial and it has got the potential to identify further novel, effective targets for therapy and reduce the burden of this chronic disease.
Từ khóa
Tài liệu tham khảo
Cheng LK, O'Grady G, Du P, Egbuji JU, Windsor JA, Pullan AJ. Gastrointestinal system. Wiley Interdiscip Rev Syst Biol Med. 2010;2(1):65–79.
Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 2016;30(2):145–59.
Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. Bmj. 2018 Jun 13;361:k2179.
Azzouz LL, Sharma S. Physiology, Large Intestine. InStatPearls [Internet], vol. 14: StatPearls Publishing; 2018.
Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014;7:113.
Leddin D, Tamim H, Levy AR. Decreasing incidence of inflammatory bowel disease in eastern Canada: a population database study. BMC Gastroenterol. 2014;14:140.
Mak WY, Zhao M, Ng SC, Burisch J. The epidemiology of inflammatory bowel disease: east meets west. J Gastroenterol Hepatol. 2019. https://doi.org/10.1111/jgh.14872 [Epub ahead of print].
Kim HJ, Hann HJ, Hong SN, et al. Incidence and natural course of inflammatory bowel disease in Korea, 2006-2012: a nationwide population-based study. Inflamm Bowel Dis. 2015;21:623–30.
Burisch J, Jess T, Martinato M, Lakatos PL. The burden of inflammatory bowel disease in Europe. J Crohns Colitis. 2013;7:322–37.
M’koma AE. Inflammatory bowel disease: an expanding global health problem. Clinical Medicine Insights. Gastroenterology. 2013;6(CGast):S12731.
da Silva BC, Lyra AC, Rocha R, Santana GO. Epidemiology, demographic characteristics and prognostic predictors of ulcerative colitis. World J Gastroenterol: WJG. 2014;20(28):9458.
Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 2018;39(9):677–96.
Kong S, Zhang YH, Zhang W. Regulation of intestinal epithelial cells properties and functions by amino acids. Biomed Res Int. 2018;2018.
Blachier F, de Sá RA, Leite GD, da Costa AV, Junior AH. Colon epithelial cells luminal environment and physiopathological consequences: impact of nutrition and exercise. Nutrire. 2018 Dec;43(1):2.
Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterology Rep. 2010;12(5):319–30.
Knoop KA, McDonald KG, McCrate S, McDole JR, Newberry RD. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015;8(1):198.
Noah TK, Donahue B, Shroyer NF. Intestinal development and differentiation. Exp Cell Res. 2011;317(19):2702–10.
Wu X, Conlin VS, Morampudi V, Ryz NR, Nasser Y, Bhinder G, Bergstrom KS, Hong BY, Waterhouse CC, Buchan AM, Popescu OE. Vasoactive intestinal polypeptide promotes intestinal barrier homeostasis and protection against colitis in mice. PLoS One. 2015;10(5):e0125225.
DeRoche TC, Xiao SY, Liu X. Histological evaluation in ulcerative colitis. Gastroenterology Rep. 2014;2(3):178–92.
Feakins RM. Inflammatory bowel disease biopsies: updated British Society of Gastroenterology reporting guidelines. J Clin Pathol. 2013;66(12):1005–26.
Drakes ML, Czinn SJ, Blanchard TG. Isolation and purification of colon lamina propria dendritic cells from mice with colitis. Cytotechnology. 2004;46(2–3):151–61.
Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119.
Andersen V, Ernst A, Christensen J, Østergaard M, Jacobsen BA, Tjønneland A, Krarup HB, Vogel U. The polymorphism rs3024505 proximal to IL-10 is associated with risk of ulcerative colitis and Crohns disease in a Danish case-control study. BMC Med Genet. 2010;11(1):82.
Sarlos P, Kovesdi E, Magyari L, Banfai Z, Szabo A, Javorhazy A, Melegh B. Genetic update on inflammatory factors in ulcerative colitis: review of the current literature. World J Gastrointestinal Pathophysiology. 2014;5(3):304.
Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S, Prescott NJ, Nimmo ER, Massey D, Berzuini C, Johnson C, Barrett JC. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat Genet. 2008;40(6):710.
de Lange KM, Barrett JC. Understanding inflammatory bowel disease via immunogenetics. J Autoimmun. 2015;64:91–100.
Chikuma S. CTLA-4, an essential immune-checkpoint for T-cell activation. Emerging concepts targeting immune checkpoints in Cancer and autoimmunity 2017 (pp. 99-126). Springer. Cham. .
Zhou F, Xia B, Guo QS, Wang Q, Li L, Jiang L, Cheng H. Cytotoxic T lymphocyte antigen-4 promoter gene polymorphism is significantly associated with ulcerative colitis. Zhonghua nei ke za zhi. 2006;45(6):478–81.
Shen ZH, Zhu CX, Quan YS, Yang ZY, Wu S, Luo WW, Tan B, Wang XY. Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol. 2018;24(1):5.
Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev. 2002 Jan 1;15(1):79–94.
Toshifumi HI. Pathogenesis and treatment of ulcerative colitis. JMA Policies. 2003;257.
Cohavy O, Bruckner D, Gordon LK, Misra R, Wei B, Eggena ME, Targan SR, Braun J. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun. 2000 Mar 1;68(3):1542–8.
Masoodi I, Tijjani BM, Wani H, Hassan NS, Khan AB, Hussain S. Biomarkers in the management of ulcerative colitis: a brief review. GMS German Medical Science. 2011;9.
Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G, Domingues FS, Albrecht M, Nothnagel M, Ellinghaus D, Sina C. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet. 2008;40(11):1319.
Engelhardt KR, Grimbacher B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. InInterleukin-10 in health and disease 2014 (pp. 1-18). Springer, Berlin. Heidelberg. .
Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010 Mar;10(3):170–81.
Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunology. 2012;32:1.
Zigmond E, Bernshtein B, Friedlander G, Walker CR, Yona S, Kim KW, Brenner O, Krauthgamer R, Varol C, Müller W, Jung S. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity. 2014;40(5):720–33.
Marlow GJ, van Gent D, Ferguson LR. Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J Gastroenterol: WJG. 2013;19(25):3931.
Bennike T, Birkelund S, Stensballe A, Andersen V. Biomarkers in inflammatory bowel diseases: current status and proteomics identification strategies. World J Gastroenterol: WJG. 2014;20(12):3231.
Bernstein CN, El-Gabalawy H, Sargent M, Landers CJ, Rawsthorne P, Elias B, Targan SR. Assessing inflammatory bowel disease-associated antibodies in Caucasian and first nations cohorts. Can J Gastroenterology Hepatology. 2011;25(5):269–73.
Fell JM, Muhammed R, Spray C, Crook K, Russell RK. Management of ulcerative colitis. Arch Dis Child. 2016;101(5):469–74.
Idriss HT, Naismith JH. TNFα and the TNF receptor superfamily: structure-function relationship (s). Microsc Res Tech. 2000;50(3):184–95.
Thukral C, Cheifetz A, Peppercorn MA. Anti-tumour necrosis factor therapy for ulcerative colitis. Drugs. 2006;66(16):2059–65.
Liu H, Dasgupta S, Fu Y, Bailey B, Roy C, Lightcap E, Faustin B. Subsets of mononuclear phagocytes are enriched in the inflamed colons of patients with IBD. BMC Immunol. 2019;20(1):42.
Ghosh S, Panaccione R. Anti-adhesion molecule therapy for inflammatory bowel disease. Ther Adv Gastroenterol. 2010;3(4):239–58.
Raine T. Vedolizumab for inflammatory bowel disease: changing the game, or more of the same? United European Gastroenterol J. 2014;2(5):333–44.
Schleier L, Wiendl M, Heidbreder K, Binder MT, Atreya R, Rath T, Becker E, Schulz-Kuhnt A, Stahl A, Schulze LL, Ullrich K, Merz SF, Bornemann L, Gunzer M, Watson AJM, Neufert C, Atreya I, Neurath MF, Zundler S. Non-classical monocyte homing to the gut via α4β7 integrin mediates macrophage-dependent intestinal wound healing. Gut. 2020;69(2):252–63.
Card T, Xu J, Liang H, Bhayat F. What is the risk of progressive multifocal leukoencephalopathy in patients with ulcerative colitis or Crohn’s disease treated with vedolizumab? Inflamm Bowel Dis. 2018;24(5):953–9.
Scribano ML. Vedolizumab for inflammatory bowel disease: from randomized controlled trials to real-life evidence. World J Gastroenterol. 2018;24(23):2457.
Torres J, Danese S, Colombel JF. New therapeutic avenues in ulcerative colitis: thinking out of the box. Gut. 2013;62(11):1642–52.
Fernández-Clotet A, Castro-Poceiro J, Panés J. Tofacitinib for the treatment of ulcerative colitis. Expert Rev Clin Immunol. 2018;14(11):881–92.
Hanauer S, Panaccione R, Danese S, Cheifetz A, Reinisch W, Higgins PDR, Woodworth DA, Zhang H, Friedman GS, Lawendy N, Quirk D, Nduaka CI, Su C. Tofacitinib induction therapy reduces symptoms within 3 days for patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2019;17(1):139–47.
Wirtz S, Neurath MF. Illuminating the role of type I IFNs in colitis. J Clin Invest. 2005;115(3):586–8.
Watanabe T, Hirono H, Hasegawa K, Soga K, Shibasaki K. Literature review in cases with exacerbation of ulcerative colitis induced by treatment with interferon and/or ribavirin. J Gastroenterol Hepatol. 2011;26(12):1709–16.
Croft NM. Phospholipid in UC: novel, safe and works—is it too good to be true? Gastroenterology. 2006;130(3):1003–4.
Gibson PR, Muir JG. Reinforcing the mucus: a new therapeutic approach for ulcerative colitis? Gut. 2005;54(7):900–3.
Garud S, Peppercorn MA. Ulcerative colitis: current treatment strategies and future prospects. Ther Adv Gastroenterol. 2009;2(2):99–108.
La Fata G, Weber P, Mohajeri MH. Probiotics and the gut immune system: indirect regulation. Probiotics Antimicrobial Proteins. 2018;10(1):11–21.
Quraishi MN, Shaheen W, Oo YH, Iqbal TH. Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease. Clin Exp Immunol. 2020;199(1):24–38.
Paramsothy S, Nielsen S, Kamm MA, Deshpande NP, Faith JJ, Clemente JC, Paramsothy R, Walsh AJ, van den Bogaerde J, Samuel D, Leong RWL, Connor S, Ng W, Lin E, Borody TJ, Wilkins MR, Colombel JF, Mitchell HM, Kaakoush NO. Specific Bacteria and Metabolites Associated With Response to Fecal Microbiota Transplantation in Patients With Ulcerative Colitis. Gastroenterology. 2019;156(5):1440–54 e2.
Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, Katsikeros R, Makanyanga J, Campaniello MA, Mavrangelos C, Rosewarne CP, Bickley C, Peters C, Schoeman MN, Conlon MA, Roberts-Thomson IC, Andrews JM. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321(2):156–64.
Zhang T, Cui B, Li P, He Z, Long C, Wei L, Peng Z, Ji G, Zhang F. Short-term surveillance of cytokines and C-reactive protein cannot predict efficacy of fecal microbiota transplantation for ulcerative colitis. PLoS One. 2016;11(6):e0158227.
Jacob V, Crawford C, Cohen-Mekelburg S, Viladomiu M, Putzel GG, Schneider Y, Chabouni F, O’Neil S, Bosworth B, Woo V, Ajami NJ, Petrosino JF, Gerardin Y, Kassam Z, Smith M, Iliev ID, Sonnenberg GF, Artis D, Scherl E, Longman RS. Single delivery of high-diversity fecal microbiota preparation by colonoscopy is safe and effective in increasing microbial diversity in active ulcerative colitis. Inflamm Bowel Dis. 2017;23(6):903–11.