Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions

Mohamed I. Abbas1
1Alexandria University, Alexandria, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. Agarwal, M. Benchohra, S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions”, Acta Appl. Math., 109, 973–1033, 2010.

D.D. Bainov, P.S. Simeonov, Systems with Impulsive Effect (Horwood, Chichester, 1989).

M. Benchohra, J. Henderson, S.K. Ntouyas, Impulsive Differential Equations and Inclusions (Hindawi Publ. Corp., New York, 2006).

J. Diblik, Z. Svoboda, “Positive solutions of p-type retarded functional differential equations”, Nonlinear Anal., 64, 1831–48, 2006.

K. Diethelm, The Analysis of Fractional Differential Equations, an Application-Oriented Exposition Using Differential Operators of Caputo Type (Springer, Berlin, 2010).

K. Deimling, Nonlinear Functional Analysis (Springer, Berlin, 1985).

A. Guezane-Lakoud, D. Belakroum, “Rothe’s method for telegraph equation with integral conditions”, Nonlinear Anal., 70, 3842–3853, 2009.

J.K. Hale, Theory of Functional Differential Equations (Springer, New York, Heidelberg, Berlin, 1977).

D.H. Hyers, “On the stability of the linear functional equation”, Proc. Natl. Acad. Sci., 27, 222–224, 1941.

D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables (Birkhäuser, Basel, 1998).

F. Isaia, “On nonlinear integral equation without compactness”, Acta Math. Univ. Comenia., 75, 233–240, 2006.

S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis (Hadronic Press, Palm Harbor, 2001).

S.M. Jung, “Hyers-Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 17, 1135–1140, 2004.

S.M. Jung, Th.M. Rassias, “Generalized Hyers-Ulam stability of Riccati differential equation”, Math. Inequal. Appl., 11, 777–782, 2008.

V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations (Worlds Scientific, Singapore, 1989).

I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999).

Th.M. Rassias, “On the stability of linear mappings in Banach spaces”, Proc. Amer. Math. Soc., 72, 297–300, 1978.

S.M. Ulam, A Collection of Mathematical Problems (Interscience Publishers, New York, 1968).

J. Wang, L. Li, Y. Zhou, “Ulam stability and data dependence for fractional differential equations with Caputo derivative”, Electron. J. Qual. TheoryDiffer. Equ., 63, 1–10, 2011.

H. Ye, J. Gao, Y. Ding, “A generalized Gronwall inequality and its application to a fractional differential equation”, J. Math. Anal. Appl., 328, 1075–1081, 2007.

S. Zhang, “Positive solutions for boundary-value problems of nonlinear fractional differential equations”, Electron. J. Diffeerential Equation., 36, 1–12, 2006.