UV-initiated crosslinking of electrospun chitosan/poly(ethylene oxide) nanofibers doped with ZnO-nanoparticles: development of antibacterial nanofibrous hydrogel

Springer Science and Business Media LLC - Tập 10 - Trang 642-651 - 2020
G. M. Estrada-Villegas1, J. I. Del Río-De Vicente1, L. Argueta-Figueroa2, G. González-Pérez3
1CONACyT — Centro de Investigación en Química Aplicada, Av. Alianza Sur 204 Parque de Innovación e Investigación Tecnológica, Apodaca, Nuevo León, Mexico
2CONACyT — Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
3Departamento de Ingeniería, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Av. Eloy Cavazos, Guadalupe, Nuevo León, Mexico

Tóm tắt

UV-initiated crosslinking of electrospun poly(ethylene) oxide (PEO)/chitosan (CS) nanofibers doped with zinc oxide nanoparticles (ZnO-NPs) was performed using pentaerythritol triaclyrate (PETA) as the photoinitiator and crosslinker agent. The influence of the addition of PETA to the PEO/CS diameter and crosslinking of nanofibers was evaluated. The effect of irradiation time on the morphology and swelling properties of the crosslinked nanofibers were investigated. For ZnO-NPs, the minimum inhibitory concentrations were found at 1 mg/mL, and the minimum bactericidal concentrations at 2 mg/mL for all the strains tested. The nanofibrous hydrogel antibacterial effect was tested. This material enters the realm of fibrous hydrogels which have potential use in several applications as in the biomedical area.

Tài liệu tham khảo

M. Afshari: Electrospun Nanofibers, 1st ed. (Woodhead Publishing, North Carolina. USA, 2016) p 648. J.H. Zhang and S.H. Yu: Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43, 4423 (2014). A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, and S.K. Bakhori: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro. Lett. 7, 219 (2015). P. Charoenlarp, A.K. Rajendran, R. Fujihara, T. Kojima, K. Nakahama, and Y. Sasaki: The improvement of calvarial bone healing by durable nanogel-crosslinked materials. J. Biomater. Sci. 29, 1876 (2018). P. Ferreira, P. Santos, P. Alves, M.P. Carvalho, and K.D. Sá: Photocrosslinkable electrospun fiber meshes for tissue engineering applications. Eur. Polym. J. 97, 210 (2017). P. Vashisth and V. Pruthi: Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. Mater. Sci. Eng. C 67, 304 (2016). R. Jayakumar, D. Menon, K. Manzoor, S.V. Nair, and H. Tamura: Biomedical applications of chitin and chitosan based nanomaterials — a short review. Carbohyd. Polym. 82, 227 (2010). P. Datta, P. Ghosh, K. Ghosh, P. Maity, S.K. Samanta, and S.K. Ghosh: In vitro ALP and osteocalcin gene expression analysis and in vivo biocompatibility of N-methylene phosphonic chitosan nanofibers for bone regeneration. J. Biomed. Nanotech. 9, 870 (2013). M. Koosha and H. Mirzadeh: Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mat. Res. A 103, 3081 (2015). S. Dhawan, K. Dhawan, M. Varma, and R.V. Sinha: High molecular weight poly(ethylene oxide)-based drug delivery systems — part I: hydrogels and hydrophilic matrix systems. Pharm. Tech. 29, 72 (2005). E. Erizal and T. Wikanta: Synthesis of polyethylene oxide (PEO)-chitosan hydrogel prepared by gamma radiation technique. Indones. J. Chem. 11, 16 (2011). M. Şimşek, S. Çakmak, and M. Gümüşderelioğlu: Insoluble poly(ethylene oxide) nanofibrous coating materials: effects of crosslinking conditions on the matrix stability. J. Polym. Res. 23, 236 (2016). M. Doytcheva, D. Dotcheva, R. Stamenova, and C. Tsvetanov: UV-initiated crosslinking of poly(ethylene oxide) with pentaerythritol triacrylate in solid state. Macromol. Mat. Eng. 286, 30 (2001). P. Kianfar, A. Vitale, S.D. Vacche, and R. Bongiovanni: Photo-crosslinking of chitosan/poly(ethylene oxide) electrospun nanofibers. Carbohyd. Polym. 217, 144 (2019). S.J. Forbey, G.M. Divoux, K.E. Moore, and R.B. Moore: Cross-linked electrospun poly(ethylene oxide) fiber mats as structured polymer gel electrolytes. ECS Trans. 66, 1 (2015). S.B. Lee, Y.H. Kim, M.S. Chong, and Y.M. Lee: Preparation and characteristics of hybrid scaffolds composed of β-chitin and collagen. Biomaterials 25, 2309 (2004). W. Ziebuhr, S. Hennig, M. Eckart, H. Kranzler, C. Batzilla, and S. Kozitskaya: Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int. J. Antimicrob. Agents 28, 14 (2006). T.J. Foster: Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 41, 430 (2017). S. Agarwal, J.H. Wendorff, and A. Greiner: Use of electrospinning technique for biomedical applications. Polymer 49, 5603 (2008). P. Zahedi, I. Rezaeian, S.O. Ranaei-Siadat, S.H. Jafari, and P. Supaphol: A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol. 21, 77 (2010). N. Fereydouni, M. Darroudi, J. Movaffagh, A. Shahroodi, A.E. Butler, S. Ganjali, and A. Sahebkar: Curcumin nanofibers for the purpose of wound healing. J. Cell. Physiol. 234, 1 (2018). G.M. Estrada-Villegas, R.C. Martínez-Hernández, J. Morales, and R. Olayo: Incorporation of ciprofloxacin/beta cyclodextrin inclusion complex to polylactic acid electrospun fibers and modeling of the release behavior. Rev. Mex. Ing. Quím. 18, 737 (2019). G. Yuvaraja, J.L. Pathak, Z. Weijiang, Z. Yaping, and X. Jiao: Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int. J. Biol. Macromol. 103, 234 (2017). P.A. Wayne: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. CLSI Document M07-A9 (Clinical and Laboratory Standards Institute, Pensilvania, 2012). J. Jorgensen and J. Turnidge: Susceptibility test methods: dilution and disk diffusion methods. In Manual of Clinical Microbiology, 11th ed. Washington, DCA. USA (American Society of Microbiology, 2015) p. 1253. B. Liu and H.C. Zeng: Direct growth of enclosed ZnO nanotubes. Nano. Res. 2, 201 (2009). M.N.R. Kumar: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1 (2000). N. Kimura, J. Umemura, and S. Hayashi: Polarized FT-IR spectra of water in the middle phase of Triton X100-water system. J. Colloid Interface Sci. 182, 356 (1996). S.N. Alhosseini, F. Moztarzadeh, M. Mozafari, S. Asgari, M. Dodel, A. Samadikuchaksaraei, and N. Jalali: Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int. J. Nanomed. 7, 25–34 (2012). C. Zhou, Q. Wang, Q. Wu, M. Doytcheva, D. Dotcheva, R. Stamenova, and C. Tsvetanov: UV-initiated crosslinking of poly(ethylene oxide) with pentaerythritol triacrylate in solid state. Macromol. Mater. Eng. 286, 30–33 (2001). G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, and R.T. Williams: Photoluminescence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys. Status Solidi 3, 3577 (2006). C. Zhou, Q. Wang, and Q. Wu: UV-initiated crosslinking of electrospun poly(ethylene oxide) nanofibers with pentaerythritol triacrylate: effect of irradiation time and incorporated cellulose nanocrystals. Carbohyd. Polym. 87, 1779 (2012). M. Koosha, M. Raoufi, and H. Moravvej: One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids Surf. B Biointerfaces 179, 270 (2019). J. Ma, J. Li, Y. Bao, Z. Zhu, X. Wang, and J. Zhang: Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram. Int. 39, 2803 (2013). A. Stanković, S. Dimitrijević, and D. Uskoković: Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B Biointerfaces 102, 21 (2013).