U–Pb, Lu–Hf and trace element characteristics of zircon from the Felbertal scheelite deposit (Austria): New constraints on timing and source of W mineralization
Tài liệu tham khảo
Anders, 1989, Abundances of the elements: meteoritic and solar, Geochim. Cosmochim. Acta, 53, 197, 10.1016/0016-7037(89)90286-X
Audétat, 2000, Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn–W–F-mineralized mole granite (Australia), Geochim. Cosmochim. Acta, 64, 3373, 10.1016/S0016-7037(00)00428-2
Audétat, 2008, Special paper: the composition of magmatic-hydrothermal fluids in barren and mineralized intrusions, Econ. Geol., 103, 877, 10.2113/gsecongeo.103.5.877
Ballard, 2002, Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile, Contrib. Mineral. Petrol., 144, 347, 10.1007/s00410-002-0402-5
Bau, 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect, Contrib. Mineral. Petrol., 123, 323, 10.1007/s004100050159
Bau, 1995, Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids, Contrib. Mineral. Petrol., 119, 213, 10.1007/BF00307282
Bouvier, 2008, The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets, Earth Planet. Sci. Lett., 273, 48, 10.1016/j.epsl.2008.06.010
Brathwaite, 1993, The metallogenetic map of New Zealand, Inst. Geol. Nucl. Sci. monogr., 3
Breiter, 2014, Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites, Lithos, 192–195, 208, 10.1016/j.lithos.2014.02.004
Briegleb, 1991, Die Scheelitlagerstätte im Felbertal bei Mittersill (Land Salzburg), Ber. Dtsch. Min. Ges., 2, 48
Burt, 1981, Acidity-salinity diagrams — applications to greisen and porphyry deposits, Econ. Geol., 76, 832, 10.2113/gsecongeo.76.4.832
Connelly, 2001, Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology, Chem. Geol., 172, 25, 10.1016/S0009-2541(00)00234-5
Corfu, 2003, Atlas of zircon textures, Rev. Mineral. Geochem., 53, 469, 10.2113/0530469
Cuney, 2009, The extreme diversity of uranium deposits, Mineral. Deposita, 44, 3, 10.1007/s00126-008-0223-1
Eichhorn, 1997, Dating scheelite stages: a strontium, neodymium, lead approach from the Felbertal tungsten deposit, Central Alps, Austria, Geochim. Cosmochim. Acta, 61, 5005, 10.1016/S0016-7037(97)00349-9
Eichhorn, 1999, Implications of U–Pb SHRIMP zircon data on the age and evolution of the Felbertal tungsten deposit (Tauern Window, Austria), Int. J. Earth Sci., 88, 496, 10.1007/s005310050281
Eichhorn, 2000, Multistage variscan magmatism in the central Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data, Contrib. Mineral. Petrol., 139, 418, 10.1007/s004100000145
Eichhorn, 2001, Unravelling the pre-variscan evolution of the Habach terrane (Tauern Window, Austria) by U–Pb SHRIMP zircon data, Contrib. Mineral. Petrol., 142, 147, 10.1007/s004100100284
Eichhorn, 1995, Age and evolution of scheelite-hosting rocks in the Felbertal deposit (Eastern Alps): U–Pb geochronology of zircon and titanite, Contrib. Mineral. Petrol., 119, 377, 10.1007/BF00286936
Finger, 1993, Genauere U/Pb Alter für Granite und Granitgneise durch sorgfältige Zirkonselektion unter dem Durchlichtmikroskop — Der Knorrkogelgneis der Hohen Tauern als Beispiel, Ber. Dtsch. Min. Ges., 5, 118
Finger, 1993, The Zentralgneise of the Tauern Window (Eastern Alps): insight into an intra-alpine variscan batholith, 375
Frasl, 1967, Glimmerpseudomorphosen nach Cordierit im Zentralgneis des Granatspitzkerns, Hohe Tauern, Joanneum Mineral. Mitt., 1–2, 11
Fuchs, 1958, Beitrag zur Kenntnis der Geologie des Gebietes Granatspitze — Großvenediger (Hohe Tauern), Jb. Geol. B.-A., 101, 201
Gerdes, 2006, Combined U–Pb and Hf isotope LA–(MC–)ICP–MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany, Earth Planet. Sci. Lett., 249, 47, 10.1016/j.epsl.2006.06.039
Gerdes, 2009, Zircon formation versus zircon alteration — new insights from combined U–Pb and Lu–Hf in-situ LA–ICP–MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt, Chem. Geol., 261, 230, 10.1016/j.chemgeo.2008.03.005
Griffin, 2000, The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites, Geochim. Cosmochim. Acta, 64, 133, 10.1016/S0016-7037(99)00343-9
Griffin, 2008, GLITTER: data reduction software for laser ablation ICP–MS, 40, 307
Grundmann, 1989, Metamorphic evolution of the Habach formation a review, Mitt. Österr. Geol. Ges., 81, 133
Halter, 2004, The magmatic to hydrothermal transition and its bearing on ore-forming systems, Chem. Geol., 210, 1, 10.1016/j.chemgeo.2004.06.001
Hanchar, 1993, Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories, Chem. Geol., 110, 1, 10.1016/0009-2541(93)90244-D
Hinton, 1991, The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths, Geochim. Cosmochim. Acta, 55, 3287, 10.1016/0016-7037(91)90489-R
Höck, 1993, The Habach-Formation and the Zentralgneis — a key in understanding the Palaeozoic evolution of the Tauern Window (Eastern Alps), 361
Höll, 1975
Höll, 2000, Tungsten mineralization and metamorphic remobilization in the Felbertal scheelite deposit, central Alps, Austria, 11, 233
Hoskin, 2005, Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia, Geochim. Cosmochim. Acta, 69, 637, 10.1016/j.gca.2004.07.006
Hoskin, 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon, J. Metamorph. Geol., 18, 423, 10.1046/j.1525-1314.2000.00266.x
Hoskin, 2003, The composition of zircon and igneous and metamorphic petrogenesis, Rev. Mineral. Geochem., 53, 27, 10.2113/0530027
Hoskin, 2000, Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach, J. Petrol., 41, 1365, 10.1093/petrology/41.9.1365
Inger, 1994, Timing of metamorphism in the Tauern Window, Eastern Alps: Rb–Sr ages and fabric formation, J. Metamorph. Geol., 12, 695, 10.1111/j.1525-1314.1994.tb00052.x
Irber, 1999, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmochim. Acta, 63, 489, 10.1016/S0016-7037(99)00027-7
Kebede, 2007, Zircon ‘microvein’ in peralkaline granitic gneiss, western Ethiopia: origin, SHRIMP U–Pb geochronology and trace element investigations, Chem. Geol., 242, 76, 10.1016/j.chemgeo.2007.03.014
Kebede, 2005, Understanding the pre-variscan and variscan basement components of the central Tauern Window, Eastern Alps (Austria): constraints from single zircon U–Pb geochronology, Int. J. Earth Sci., 94, 336, 10.1007/s00531-005-0487-y
Kempe, 2015, Concordant U–Pb SHRIMP ages of U-rich zircon in granitoids from the Muruntau gold district (Uzbekistan): timing of intrusion, alteration ages, or meaningless numbers, Ore Geol. Rev., 65, 308, 10.1016/j.oregeorev.2014.10.007
Kozlik, 2015
Kozlik, 2014, Chemical characteristics of the K1–K3 metagranitoid in the Felbertal scheelite deposit (Austria), Mitt. Österr. Mineral. Ges., 160, 37
Kurhila, 2010, Diverse sources of crustal granitic magma: Lu–Hf isotope data on zircon in three Paleoproterozoic leucogranites of southern Finland, Lithos, 115, 263, 10.1016/j.lithos.2009.12.009
Kwak, 1987
Li, 2014, Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralization processes, Ore Geol. Rev., 60, 14, 10.1016/j.oregeorev.2013.12.009
Linnen, 2002, Melt composition control of Zr/Hf fractionation in magmatic processes, Geochim. Cosmochim. Acta, 66, 3293, 10.1016/S0016-7037(02)00924-9
Linnen, 2014, Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits, 543
Ludwig
Nasdala, 1998, Metamictization and U–Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study, Mineral. Petrol., 62, 1, 10.1007/BF01173760
Pestal, 1983
Pettke, 2005, Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia): part II: evolving zircon and thorite trace element chemistry, Chem. Geol., 220, 191, 10.1016/j.chemgeo.2005.02.017
Pidgeon, 1998, Internal structures of zircons from Archaean granites from the darling range batholith: implications for zircon stability and the interpretation of zircon U–Pb ages, Contrib. Mineral. Petrol., 132, 288, 10.1007/s004100050422
Pirajno, 2009
von Quadt, 1992, U–Pb zircon and Sm–Nd geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (eastern Alps), Contrib. Mineral. Petrol., 110, 57, 10.1007/BF00310882
Raith, 2010, Tungsten deposit Felbertal, Salzburg, Austria, Acta Mineral. Petrogr. Field Guide Ser., 3, 1
Raith, 2006, Variscan ore formation and metamorphism at the Felbertal scheelite deposit (Austria): constraining tungsten mineralisation from Re–Os dating of molybdenite, Contrib. Mineral. Petrol., 152, 505, 10.1007/s00410-006-0118-z
Raith, 2011, In situ U–Pb dating of scheelite: constraints on the age and genesis of the Felbertal tungsten deposit, Mineral. Mag., 75, 1690
Robb, 2005
Schaltegger, 2009, Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy), Earth Planet. Sci. Lett., 286, 208, 10.1016/j.epsl.2009.06.028
Schaltegger, 2005, Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia): part I: crystallization of zircon and REE-phosphates over three million years—a geochemical and U–Pb geochronological study, Chem. Geol., 220, 215, 10.1016/j.chemgeo.2005.02.018
Schatz, 2004, Partitioning of boron among melt, brine and vapor in the system haplogranite–H2O–NaCl at 800°C and 100MPa, Chem. Geol., 210, 135, 10.1016/j.chemgeo.2004.06.007
Scherer, 2001, Calibration of the lutetium–hafnium clock, Science, 293, 683, 10.1126/science.1061372
Schmidt, 2012
Schneider, 2015, U–Pb ages of apatite in the western Tauern Window (Eastern Alps): tracing the onset of collision-related exhumation in the European plate, Earth Planet. Sci. Lett., 418, 53, 10.1016/j.epsl.2015.02.020
Shu, 2011, Trace elements, U–Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China: implications for petrogenesis and W–Sn mineralization, Lithos, 127, 468, 10.1016/j.lithos.2011.09.019
Sláma, 2008, Plešovice zircon — a new natural reference material for U–Pb and Hf isotopic microanalysis, Chem. Geol., 249, 1, 10.1016/j.chemgeo.2007.11.005
Söderlund, 2004, The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions, Earth Planet. Sci. Lett., 219, 311, 10.1016/S0012-821X(04)00012-3
Thomas, 2002, Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon, Geochim. Cosmochim. Acta, 66, 2887, 10.1016/S0016-7037(02)00881-5
Topa, 2002, Composition ranges and exsolution pairs for the members of the bismuthinite–aikinite series from Felbertal, Austria, Can. Mineral., 40, 849, 10.2113/gscanmin.40.3.849
Veksler, 2004, Liquid immiscibility and its role at the magmatic–hydrothermal transition: a summary of experimental studies, Chem. Geol., 210, 7, 10.1016/j.chemgeo.2004.06.002
Veksler, 2005, Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks, Geochim. Cosmochim. Acta, 69, 2847, 10.1016/j.gca.2004.08.007
Wang, 2014, Influence of radiation damage on Late Jurassic zircon from southern China: evidence from in situ measurements of oxygen isotopes, laser Raman, U–Pb ages, and trace elements, Chem. Geol., 389, 122, 10.1016/j.chemgeo.2014.09.013
Wedepohl, 1995, The composition of the continental crust, Geochim. Cosmochim. Acta, 59, 1217, 10.1016/0016-7037(95)00038-2
Wiedenbeck, 1995, Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses, Geostand. Newslett., 19, 1, 10.1111/j.1751-908X.1995.tb00147.x
Williams-Jones, 2005, Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits, Econ. Geol., 100, 1287, 10.2113/gsecongeo.100.7.1287
Yang, 2014, Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization, Mineral. Deposita, 49, 451, 10.1007/s00126-013-0504-1
Zeh, 2012, U–Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the Pietersburg Greenstone Belt (South Africa)—is there a common provenance with the Witwatersrand Basin?, Precambrian Res., 204–205, 46, 10.1016/j.precamres.2012.02.013
Zhao, 2014, Reliability of LA–ICP–MS U–Pb dating of zircons with high U concentrations: a case study from the U-bearing Douzhashan Granite in South China, Chem. Geol., 389, 110, 10.1016/j.chemgeo.2014.09.018