Type IV secretion systems and their effectors in bacterial pathogenesis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Thanassi, 2000, Multiple pathways allow protein secretion across the bacterial outer membrane, Curr Opin Cell Biol, 12, 420, 10.1016/S0955-0674(00)00111-3
Cascales, 2003, The versatile bacterial type IV secretion systems, Nat Rev Microbiol, 1, 137, 10.1038/nrmicro753
Grohmann, 2003, Conjugative plasmid transfer in gram-positive bacteria, Microbiol Mol Biol Rev, 67, 277, 10.1128/MMBR.67.2.277-301.2003
Schroder, 2005, The mating pair formation system of conjugative plasmids – a versatile secretion machinery for transfer of proteins and DNA, Plasmid, 54, 1, 10.1016/j.plasmid.2005.02.001
Sexton, 2002, Type IVB secretion by intracellular pathogens, Traffic, 3, 178, 10.1034/j.1600-0854.2002.030303.x
Karnholz, 2006, Functional and topological characterization of novel components of comB DNA transformation competence system in Helicobacter pylori, J Bacteriol, 188, 882, 10.1128/JB.188.3.882-893.2006
Hamilton, 2005, Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system, Mol Microbiol, 55, 1704, 10.1111/j.1365-2958.2005.04521.x
Miyamoto, 2003, Virulence conversion of Legionella pneumophila by conjugal transfer of chromosomal DNA, J Bacteriol, 185, 6712, 10.1128/JB.185.22.6712-6718.2003
Backert, 2005, Conjugative plasmid DNA transfer in Helicobacter pylori mediated by chromosomally encoded relaxase and TraG-like proteins, Microbiol, 151, 3493, 10.1099/mic.0.28250-0
Burns, 2003, Type IV transporters of pathogenic bacteria, Curr Opin Microbiol, 6, 29, 10.1016/S1369-5274(02)00006-1
Yeo, 2004, Unveiling molecular scaffolds of the type IV secretion system, J Bacteriol, 186, 1919, 10.1128/JB.186.7.1919-1926.2004
Christie, 2005, Biogenesis, architecture, and function of bacterial type IV secretion systems, Annu Rev Microbiol, 59, 451, 10.1146/annurev.micro.58.030603.123630
Judd, 2005, Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus, Proc Natl Acad Sci USA, 102, 11498, 10.1073/pnas.0505290102
Ward, 2002, Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies, Proc Natl Acad Sci USA, 99, 11493, 10.1073/pnas.172390299
Zahrl, 2005, Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems, Microbiology, 151, 3455, 10.1099/mic.0.28141-0
Krall, 2002, Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens, Proc Natl Acad Sci USA, 99, 11405, 10.1073/pnas.172390699
Yuan, 2005, Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems, J Biol Chem, 280, 26349, 10.1074/jbc.M502347200
Kalkum, 2004, Protein circlets as sex pilus subunits, Curr Protein Pept Sci, 5, 417, 10.2174/1389203043379639
Schmidt-Eisenlohr, 1999, Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens, J Bacteriol, 181, 7485, 10.1128/JB.181.24.7485-7492.1999
Hwang, 2004, Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation, Plant Cell, 16, 3148, 10.1105/tpc.104.026476
Cascales, 2004, Definition of a bacterial type IV secretion pathway for a DNA substrate, Science, 304, 1170, 10.1126/science.1095211
Vergunst, 2000, VirB/D4-dependent protein translocation from Agrobacterium into plant cells, Science, 290, 979, 10.1126/science.290.5493.979
Vergunst, 2005, Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium, Proc Natl Acad Sci USA, 102, 832, 10.1073/pnas.0406241102
Tzfira, 2002, Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium, Trends Cell Biol, 12, 121, 10.1016/S0962-8924(01)02229-2
Duckely, 2005, The VirE1VirE2 complex of Agrobacterium tumefaciens interacts with single-stranded DNA and forms channels, Mol Microbiol, 58, 1130, 10.1111/j.1365-2958.2005.04894.x
Censini, 2001, Cellular responses induced after contact with Helicobacter pylori, Curr Opin Microbiol, 4, 41, 10.1016/S1369-5274(00)00162-4
Segal, 1999, Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori, Proc Natl Acad Sci USA, 96, 14559, 10.1073/pnas.96.25.14559
Higashi, 2002, SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein, Science, 295, 683, 10.1126/science.1067147
Selbach, 2003, The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation, EMBO J, 22, 515, 10.1093/emboj/cdg050
Bagnoli, 2005, Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells, Proc Natl Acad Sci USA, 102, 16339, 10.1073/pnas.0502598102
Brandt, 2005, NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein, Proc Natl Acad Sci USA, 102, 9300, 10.1073/pnas.0409873102
Selbach, 2002, Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo, J Biol Chem, 277, 6775, 10.1074/jbc.C100754200
Tsutsumi, 2003, Attenuation of Helicobacter pylori CagA SHP-2 signaling by interaction between CagA and C-terminal Src kinase, J Biol Chem, 278, 3664, 10.1074/jbc.M208155200
Mimuro, 2002, Grb2 is a key mediator of Helicobacter pylori CagA protein activities, Mol Cell, 10, 745, 10.1016/S1097-2765(02)00681-0
Churin, 2003, Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response, J Cell Biol, 161, 249, 10.1083/jcb.200208039
Rieder, 2005, Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils, Gastroenterology, 128, 1229, 10.1053/j.gastro.2005.02.064
Franco, 2005, Activation of beta-catenin by carcinogenic Helicobacter pylori, Proc Natl Acad Sci USA, 102, 10646, 10.1073/pnas.0504927102
Moese, 2004, Helicobacter pylori induces AGS cell motility and elongation via independent signaling pathways, Infect Immun, 72, 3646, 10.1128/IAI.72.6.3646-3649.2004
Churin, 2001, Pathogenicity island-dependent activation of Rho GTPases Rac1 and Cdc42 in Helicobacter pylori infection, Mol Microbiol, 40, 815, 10.1046/j.1365-2958.2001.02443.x
Selbach, 2004, The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin, Proteomics, 4, 2961, 10.1002/pmic.200400915
Selbach, 2005, Cortactin: an Achilles’ heel of the actin cytoskeleton targeted by pathogens, Trends Microbiol, 13, 181, 10.1016/j.tim.2005.02.007
Tsutsumi, 2006, Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA, Mol Cell Biol, 26, 261, 10.1128/MCB.26.1.261-276.2006
Naumann, 1999, Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island, J Biol Chem, 274, 31655, 10.1074/jbc.274.44.31655
Fischer, 2001, Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8, Mol Microbiol, 42, 1337, 10.1046/j.1365-2958.2001.02714.x
Viala, 2004, Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island, Nat Immunol, 5, 1166, 10.1038/ni1131
Keates, 2001, cag+ Helicobacter pylori induce transactivation of the epidermal growth factor receptor in AGS gastric epithelial cells, J Biol Chem, 276, 48127, 10.1074/jbc.M107630200
Covacci, 1993, Pertussis toxin export requires accessory genes located downstream from the pertussis toxin operon, Mol Microbiol, 8, 429, 10.1111/j.1365-2958.1993.tb01587.x
Weiss, 1993, Molecular characterization of an operon required for pertussis toxin secretion, Proc Natl Acad Sci USA, 90, 2970, 10.1073/pnas.90.7.2970
Segal, 1998, Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome, Proc Natl Acad Sci USA, 95, 1669, 10.1073/pnas.95.4.1669
Vogel, 1998, Conjugative transfer by the virulence system of Legionella pneumophila, Science, 279, 873, 10.1126/science.279.5352.873
Nagai, 2002, A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes, Science, 295, 679, 10.1126/science.1067025
Kagan, 2002, Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites, Nat Cell Biol, 4, 945, 10.1038/ncb883
Chen, 2004, Legionella effectors that promote nonlytic release from protozoa, Science, 303, 1358, 10.1126/science.1094226
Luo, 2004, Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer, Proc Natl Acad Sci USA, 101, 841, 10.1073/pnas.0304916101
Campodonico, 2005, A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system, Mol Microbiol, 56, 918, 10.1111/j.1365-2958.2005.04595.x
Shohdy, 2005, Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking, Proc Natl Acad Sci USA, 102, 4866, 10.1073/pnas.0501315102
Amor, 2005, The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site, J Biol Chem, 280, 1392, 10.1074/jbc.M410820200
Derre, 2005, LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway, Infect Immun, 73, 4370, 10.1128/IAI.73.7.4370-4380.2005
Kagan, 2004, Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle, J Exp Med, 199, 1201, 10.1084/jem.20031706
Molmeret, 2004, Activation of caspase-3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella-containing phagosome, Cell Microbiol, 6, 33, 10.1046/j.1462-5822.2003.00335.x
Neumeister, 2002, Legionella pneumophila induces apoptosis via the mitochondrial death pathway, Microbiology, 148, 3639, 10.1099/00221287-148-11-3639
Pizarro-Cerda, 1998, Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes, Infect Immun, 66, 5711, 10.1128/IAI.66.12.5711-5724.1998
Sieira, 2000, A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication, J Bacteriol, 182, 4849, 10.1128/JB.182.17.4849-4855.2000
Comerci, 2001, Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole, Cell Microbiol, 3, 159, 10.1046/j.1462-5822.2001.00102.x
Boschiroli, 2002, The Brucella suis virB operon is induced intracellularly in macrophages, Proc Natl Acad Sci USA, 99, 1544, 10.1073/pnas.032514299
Celli, 2005, Brucella coopts the small GTPase Sar1 for intracellular replication, Proc Natl Acad Sci USA, 102, 1673, 10.1073/pnas.0406873102
Celli, 2003, Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum, J Exp Med, 198, 545, 10.1084/jem.20030088
Zamboni, 2003, Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system, Mol Microbiol, 49, 965, 10.1046/j.1365-2958.2003.03626.x
Beron, 2002, Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics, Infect Immun, 70, 5816, 10.1128/IAI.70.10.5816-5821.2002
Sauer, 2005, Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection, Infect Immun, 73, 4494, 10.1128/IAI.73.8.4494-4504.2005
Seubert, 2003, A bacterial conjugation machinery recruited for pathogenesis, Mol Microbiol, 49, 1253, 10.1046/j.1365-2958.2003.03650.x
Schulein, 2005, A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells, Proc Natl Acad Sci USA, 102, 856, 10.1073/pnas.0406796102
Schroder, 2005, Virulence-associated type IV secretion systems of Bartonella, Trends Microbiol, 13, 336, 10.1016/j.tim.2005.05.008
Hubber, 2004, Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system, Mol Microbiol, 54, 561, 10.1111/j.1365-2958.2004.04292.x
Masui, 2000, Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods, J Bacteriol, 182, 6529, 10.1128/JB.182.22.6529-6531.2000
Iturbe-Ormaetxe, 2005, Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis, J Bacteriol, 187, 5136, 10.1128/JB.187.15.5136-5145.2005