Type IV secretion systems and their effectors in bacterial pathogenesis

Current Opinion in Microbiology - Tập 9 Số 2 - Trang 207-217 - 2006
Steffen Backert1, Thomas F. Meyer2
1Otto-von-Guericke-Universität Magdeburg, Institut für Medizinische Mikrobiologie, Leipziger Str. 44, D-39120 Magdeburg, Germany
2Max-Planck-Institut für Infektionsbiologie, Abt. Molekulare Biologie, Schumannstr. 20/21, D-10117 Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Thanassi, 2000, Multiple pathways allow protein secretion across the bacterial outer membrane, Curr Opin Cell Biol, 12, 420, 10.1016/S0955-0674(00)00111-3

Cascales, 2003, The versatile bacterial type IV secretion systems, Nat Rev Microbiol, 1, 137, 10.1038/nrmicro753

Grohmann, 2003, Conjugative plasmid transfer in gram-positive bacteria, Microbiol Mol Biol Rev, 67, 277, 10.1128/MMBR.67.2.277-301.2003

Schroder, 2005, The mating pair formation system of conjugative plasmids – a versatile secretion machinery for transfer of proteins and DNA, Plasmid, 54, 1, 10.1016/j.plasmid.2005.02.001

Sexton, 2002, Type IVB secretion by intracellular pathogens, Traffic, 3, 178, 10.1034/j.1600-0854.2002.030303.x

Karnholz, 2006, Functional and topological characterization of novel components of comB DNA transformation competence system in Helicobacter pylori, J Bacteriol, 188, 882, 10.1128/JB.188.3.882-893.2006

Hamilton, 2005, Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system, Mol Microbiol, 55, 1704, 10.1111/j.1365-2958.2005.04521.x

Miyamoto, 2003, Virulence conversion of Legionella pneumophila by conjugal transfer of chromosomal DNA, J Bacteriol, 185, 6712, 10.1128/JB.185.22.6712-6718.2003

Backert, 2005, Conjugative plasmid DNA transfer in Helicobacter pylori mediated by chromosomally encoded relaxase and TraG-like proteins, Microbiol, 151, 3493, 10.1099/mic.0.28250-0

Burns, 2003, Type IV transporters of pathogenic bacteria, Curr Opin Microbiol, 6, 29, 10.1016/S1369-5274(02)00006-1

Yeo, 2004, Unveiling molecular scaffolds of the type IV secretion system, J Bacteriol, 186, 1919, 10.1128/JB.186.7.1919-1926.2004

Christie, 2005, Biogenesis, architecture, and function of bacterial type IV secretion systems, Annu Rev Microbiol, 59, 451, 10.1146/annurev.micro.58.030603.123630

Judd, 2005, Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus, Proc Natl Acad Sci USA, 102, 11498, 10.1073/pnas.0505290102

Ward, 2002, Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies, Proc Natl Acad Sci USA, 99, 11493, 10.1073/pnas.172390299

Zahrl, 2005, Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems, Microbiology, 151, 3455, 10.1099/mic.0.28141-0

Krall, 2002, Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens, Proc Natl Acad Sci USA, 99, 11405, 10.1073/pnas.172390699

Yuan, 2005, Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems, J Biol Chem, 280, 26349, 10.1074/jbc.M502347200

Kalkum, 2004, Protein circlets as sex pilus subunits, Curr Protein Pept Sci, 5, 417, 10.2174/1389203043379639

Schmidt-Eisenlohr, 1999, Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens, J Bacteriol, 181, 7485, 10.1128/JB.181.24.7485-7492.1999

Hwang, 2004, Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation, Plant Cell, 16, 3148, 10.1105/tpc.104.026476

Cascales, 2004, Definition of a bacterial type IV secretion pathway for a DNA substrate, Science, 304, 1170, 10.1126/science.1095211

Vergunst, 2000, VirB/D4-dependent protein translocation from Agrobacterium into plant cells, Science, 290, 979, 10.1126/science.290.5493.979

Vergunst, 2005, Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium, Proc Natl Acad Sci USA, 102, 832, 10.1073/pnas.0406241102

Tzfira, 2002, Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium, Trends Cell Biol, 12, 121, 10.1016/S0962-8924(01)02229-2

Duckely, 2005, The VirE1VirE2 complex of Agrobacterium tumefaciens interacts with single-stranded DNA and forms channels, Mol Microbiol, 58, 1130, 10.1111/j.1365-2958.2005.04894.x

Censini, 2001, Cellular responses induced after contact with Helicobacter pylori, Curr Opin Microbiol, 4, 41, 10.1016/S1369-5274(00)00162-4

Segal, 1999, Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori, Proc Natl Acad Sci USA, 96, 14559, 10.1073/pnas.96.25.14559

Higashi, 2002, SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein, Science, 295, 683, 10.1126/science.1067147

Selbach, 2003, The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation, EMBO J, 22, 515, 10.1093/emboj/cdg050

Bagnoli, 2005, Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells, Proc Natl Acad Sci USA, 102, 16339, 10.1073/pnas.0502598102

Brandt, 2005, NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein, Proc Natl Acad Sci USA, 102, 9300, 10.1073/pnas.0409873102

Selbach, 2002, Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo, J Biol Chem, 277, 6775, 10.1074/jbc.C100754200

Tsutsumi, 2003, Attenuation of Helicobacter pylori CagA SHP-2 signaling by interaction between CagA and C-terminal Src kinase, J Biol Chem, 278, 3664, 10.1074/jbc.M208155200

Mimuro, 2002, Grb2 is a key mediator of Helicobacter pylori CagA protein activities, Mol Cell, 10, 745, 10.1016/S1097-2765(02)00681-0

Churin, 2003, Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response, J Cell Biol, 161, 249, 10.1083/jcb.200208039

Rieder, 2005, Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils, Gastroenterology, 128, 1229, 10.1053/j.gastro.2005.02.064

Franco, 2005, Activation of beta-catenin by carcinogenic Helicobacter pylori, Proc Natl Acad Sci USA, 102, 10646, 10.1073/pnas.0504927102

Moese, 2004, Helicobacter pylori induces AGS cell motility and elongation via independent signaling pathways, Infect Immun, 72, 3646, 10.1128/IAI.72.6.3646-3649.2004

Churin, 2001, Pathogenicity island-dependent activation of Rho GTPases Rac1 and Cdc42 in Helicobacter pylori infection, Mol Microbiol, 40, 815, 10.1046/j.1365-2958.2001.02443.x

Selbach, 2004, The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin, Proteomics, 4, 2961, 10.1002/pmic.200400915

Selbach, 2005, Cortactin: an Achilles’ heel of the actin cytoskeleton targeted by pathogens, Trends Microbiol, 13, 181, 10.1016/j.tim.2005.02.007

Tsutsumi, 2006, Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA, Mol Cell Biol, 26, 261, 10.1128/MCB.26.1.261-276.2006

Naumann, 1999, Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island, J Biol Chem, 274, 31655, 10.1074/jbc.274.44.31655

Fischer, 2001, Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8, Mol Microbiol, 42, 1337, 10.1046/j.1365-2958.2001.02714.x

Viala, 2004, Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island, Nat Immunol, 5, 1166, 10.1038/ni1131

Keates, 2001, cag+ Helicobacter pylori induce transactivation of the epidermal growth factor receptor in AGS gastric epithelial cells, J Biol Chem, 276, 48127, 10.1074/jbc.M107630200

Covacci, 1993, Pertussis toxin export requires accessory genes located downstream from the pertussis toxin operon, Mol Microbiol, 8, 429, 10.1111/j.1365-2958.1993.tb01587.x

Weiss, 1993, Molecular characterization of an operon required for pertussis toxin secretion, Proc Natl Acad Sci USA, 90, 2970, 10.1073/pnas.90.7.2970

Segal, 1998, Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome, Proc Natl Acad Sci USA, 95, 1669, 10.1073/pnas.95.4.1669

Vogel, 1998, Conjugative transfer by the virulence system of Legionella pneumophila, Science, 279, 873, 10.1126/science.279.5352.873

Nagai, 2002, A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes, Science, 295, 679, 10.1126/science.1067025

Kagan, 2002, Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites, Nat Cell Biol, 4, 945, 10.1038/ncb883

Chen, 2004, Legionella effectors that promote nonlytic release from protozoa, Science, 303, 1358, 10.1126/science.1094226

Luo, 2004, Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer, Proc Natl Acad Sci USA, 101, 841, 10.1073/pnas.0304916101

Campodonico, 2005, A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system, Mol Microbiol, 56, 918, 10.1111/j.1365-2958.2005.04595.x

Shohdy, 2005, Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking, Proc Natl Acad Sci USA, 102, 4866, 10.1073/pnas.0501315102

Amor, 2005, The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site, J Biol Chem, 280, 1392, 10.1074/jbc.M410820200

Derre, 2005, LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway, Infect Immun, 73, 4370, 10.1128/IAI.73.7.4370-4380.2005

Kagan, 2004, Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle, J Exp Med, 199, 1201, 10.1084/jem.20031706

Molmeret, 2004, Activation of caspase-3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella-containing phagosome, Cell Microbiol, 6, 33, 10.1046/j.1462-5822.2003.00335.x

Neumeister, 2002, Legionella pneumophila induces apoptosis via the mitochondrial death pathway, Microbiology, 148, 3639, 10.1099/00221287-148-11-3639

Pizarro-Cerda, 1998, Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes, Infect Immun, 66, 5711, 10.1128/IAI.66.12.5711-5724.1998

Sieira, 2000, A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication, J Bacteriol, 182, 4849, 10.1128/JB.182.17.4849-4855.2000

Comerci, 2001, Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole, Cell Microbiol, 3, 159, 10.1046/j.1462-5822.2001.00102.x

Boschiroli, 2002, The Brucella suis virB operon is induced intracellularly in macrophages, Proc Natl Acad Sci USA, 99, 1544, 10.1073/pnas.032514299

Celli, 2005, Brucella coopts the small GTPase Sar1 for intracellular replication, Proc Natl Acad Sci USA, 102, 1673, 10.1073/pnas.0406873102

Celli, 2003, Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum, J Exp Med, 198, 545, 10.1084/jem.20030088

Zamboni, 2003, Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system, Mol Microbiol, 49, 965, 10.1046/j.1365-2958.2003.03626.x

Beron, 2002, Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics, Infect Immun, 70, 5816, 10.1128/IAI.70.10.5816-5821.2002

Sauer, 2005, Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection, Infect Immun, 73, 4494, 10.1128/IAI.73.8.4494-4504.2005

Seubert, 2003, A bacterial conjugation machinery recruited for pathogenesis, Mol Microbiol, 49, 1253, 10.1046/j.1365-2958.2003.03650.x

Schulein, 2005, A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells, Proc Natl Acad Sci USA, 102, 856, 10.1073/pnas.0406796102

Schroder, 2005, Virulence-associated type IV secretion systems of Bartonella, Trends Microbiol, 13, 336, 10.1016/j.tim.2005.05.008

Hubber, 2004, Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system, Mol Microbiol, 54, 561, 10.1111/j.1365-2958.2004.04292.x

Masui, 2000, Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods, J Bacteriol, 182, 6529, 10.1128/JB.182.22.6529-6531.2000

Iturbe-Ormaetxe, 2005, Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis, J Bacteriol, 187, 5136, 10.1128/JB.187.15.5136-5145.2005

Park, 2004, Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins, Cell Microbiol, 6, 743, 10.1111/j.1462-5822.2004.00400.x