Type-2 fuzzy instrumental variable algorithm for evolving neural-fuzzy modeling of nonlinear dynamic systems in noisy environment

Engineering Applications of Artificial Intelligence - Tập 109 - Trang 104620 - 2022
Anderson Pablo Freitas Evangelista1, Ginalber Luiz de Oliveira Serra2
1Federal Institute of Education, Science and Technology of Maranhao, Rua Projetada, S/N, Vila Progresso II, CEP: 65930-000, Acailandia, Brazil
2Federal Institute of Education, Science and Technology of Maranhao, Av. Getulio Vargas, 04, Monte Castelo, CEP: 65030-005, Sao Luis-MA, Brazil

Tài liệu tham khảo

Abiyev, 2013, A type-2 fuzzy wavelet neural network for system identification and control, J. Franklin Inst. B, 350, 1658, 10.1016/j.jfranklin.2013.04.020 Angelov, 2012 Antonelli, 2017, Multiobjective evolutionary optimization of type-2 fuzzy rule-based systems for financial data classification, IEEE Trans. Fuzzy Syst., 25, 249, 10.1109/TFUZZ.2016.2578341 Babuska, 1998 Chatterjee, 2008, Augmented stable fuzzy control for flexible robotic arm using LMI approach and neuro-fuzzy state space modeling, IEEE Trans. Ind. Electron., 55, 1256, 10.1109/TIE.2007.896439 Chiuso, 2005, Consistency analysis of some closed-loop subspace identification methods, Automatica, 41, 377, 10.1016/j.automatica.2004.10.015 Ding, 2007, Auxiliary model-based least-squares identification methods for Hammerstein output-error systems, Systems Control Lett., 56, 373, 10.1016/j.sysconle.2006.10.026 Evangelista, 2019, Multivariable state-space recursive identification algorithm based on evolving type-2 neural-fuzzy inference system, J. Control Autom. Electr. Syst., 30, 921, 10.1007/s40313-019-00528-0 Evangelista, 2020, State space black-box modelling via Markov parameters based on evolving type-2 neural-fuzzy inference system for nonlinear multivariable dynamic systems, Fuzzy Sets and Systems, 394, 1, 10.1016/j.fss.2019.08.013 Filho, 2018, Recursive fuzzy instrumental variable based evolving neuro-fuzzy identification for non-stationary dynamic system in a noisy environment, Fuzzy Sets and Systems, 338, 50, 10.1016/j.fss.2017.05.016 Freire, 2016, Predicting buildings corners hygrothermal behavior by using a fuzzy inference system combined with clustering and Kalman filter, Int. Commun. Heat Mass Transfer, 71, 225, 10.1016/j.icheatmasstransfer.2015.12.015 Hagras, 2004, A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Trans. Fuzzy Syst., 12, 524, 10.1109/TFUZZ.2004.832538 Haykin, 2001 Houtzager, 2012, Recursive predictor-based subspace identification with application to the real-time closed-loop tracking of flutter, IEEE Trans. Control Syst. Technol., 20, 934, 10.1109/TCST.2011.2157694 Jer-Nan Juang, 2011 Juang, 2008, A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning, IEEE Trans. Fuzzy Syst., 16, 1411, 10.1109/TFUZZ.2008.925907 Júnior, 2017, A novel intelligent approach for state space evolving forecasting of seasonal time series, Eng. Appl. Artif. Intell., 64, 272, 10.1016/j.engappai.2017.06.016 Karnik, 1999, Type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst., 7, 643, 10.1109/91.811231 Kayacan, 2015, Identification of nonlinear dynamic systems using type-2 fuzzy neural networks,a novel learning algorithm and a comparative study, IEEE Trans. Ind. Electron., 62, 1716, 10.1109/TIE.2014.2345353 Khanesar, 2012, Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation, IEEE Trans. Ind. Electron., 59, 4443, 10.1109/TIE.2011.2151822 Kumar, 2017, Evolving an interval type-2 fuzzy PID controller for the redundant robotic manipulator, Expert Syst. Appl., 73, 161, 10.1016/j.eswa.2016.12.029 Lee, 2014, An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization, IEEE Trans. Cybern., 44, 329, 10.1109/TCYB.2013.2254113 Lemos, 2011, Multivariable Gaussian evolving fuzzy modeling system, IEEE Trans. Fuzzy Syst., 19, 91, 10.1109/TFUZZ.2010.2087381 Li, 2017, Fuzzy observer-based fault detection design approach for nonlinear processes, IEEE Trans. Syst. Man Cybern. Syst., 47, 1941, 10.1109/TSMC.2016.2576453 Li, 2017, Neuro-fuzzy based identification method for Hammerstein output error model with colored noise, Neurocomputing, 244, 90, 10.1016/j.neucom.2017.03.026 Li, 2015, Control of nonlinear networked systems with packet dropouts: Interval type-2 fuzzy model-based approach, IEEE Trans. Cybern., 45, 2378, 10.1109/TCYB.2014.2371814 Liang, 2000, Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters, IEEE Trans. Fuzzy Syst., 8, 551, 10.1109/91.873578 Liang, 2000, Interval type-2 fuzzy logic systems: theory and design, IEEE Trans. Fuzzy Syst., 8, 535, 10.1109/91.873577 Lin, 2013, A mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS) with self-evolving structure and parameters, IEEE Trans. Fuzzy Syst., 21, 492, 10.1109/TFUZZ.2013.2255613 Lin, 2018, Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control, Neurocomputing, 275, 2239, 10.1016/j.neucom.2017.11.009 Lin, 2014, Simplified interval type-2 fuzzy neural networks, IEEE Trans. Neural Netw. Learn. Syst., 25, 959, 10.1109/TNNLS.2013.2284603 Lin, 2015, An interval type-2 neural fuzzy system for online system identification and feature elimination, IEEE Trans. Neural Netw. Learn. Syst., 26, 1442, 10.1109/TNNLS.2014.2346537 Ljung, 1999 Ni, 2018, Identification of the time-varying modal parameters of a spacecraft with flexible appendages using a recursive predictor-based subspace identification algorithm, Proc. Inst. Mech. Eng. G, 1 NI, 2018, Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method, Chin. J. Aeronaut. Nie, 2008, Towards an efficient type-reduction method for interval type-2 fuzzy logic systems Nise, 2015 Oscar Castillo, 2007 Páramo-Carranza, 2017, Discrete-time Kalman filter for Takagi Sugeno fuzzy models, Evol. Syst., 8, 211, 10.1007/s12530-017-9181-0 Pires, 2018, An approach for fuzzy Kalman filter modeling based on evolving clustering of experimental data, J. Intell. Fuzzy Systems, 35, 1819, 10.3233/JIFS-17087 Pratama, 2017, An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks, IEEE Trans. Fuzzy Syst., 25, 1175, 10.1109/TFUZZ.2016.2599855 Sadala, 2018, A new continuous sliding mode control approach with actuator saturation for control of 2-DOF helicopter system, ISA Trans., 74, 165, 10.1016/j.isatra.2018.01.027 Samadi, 2017, State-space modeling and observer design of Li-Ion batteries using Takagi-Sugeno fuzzy system, IEEE Trans. Control Syst. Technol., 25, 301, 10.1109/TCST.2016.2549270 Santos, 2018, Recursive identification approach of multivariable nonlinear dynamic systems based on evolving fuzzy Hammerstein models dos Santos Coelho, 2009, Identification of the Hénon chaotic map by fuzzy modeling and Nelder Mead simplex method, Chaos Solitons Fractals, 41, 2762, 10.1016/j.chaos.2008.10.013 dos Santos Coelho, 2017, Fuzzy inference system approach using clustering and differential evolution optimization applied to identification of a twin rotor system, IFAC-PapersOnLine, 50, 13102, 10.1016/j.ifacol.2017.08.2162 Serra, 2007, An IV-QR algorithm for neuro-fuzzy multivariable online identification, IEEE Trans. Fuzzy Syst., 15, 200, 10.1109/TFUZZ.2006.879997 Serra, 2009, Fuzzy instrumental variable approach for nonlinear discrete-time systems identification in a noisy environment, Fuzzy Sets and Systems, 160, 500, 10.1016/j.fss.2008.06.020 Silva, 2014, Real-time nonlinear modeling of a twin rotor MIMO system using evolving neuro-fuzzy network Soderstrom, 2002, Instrumental variable methods for system identification, Circuits Systems Signal Process., 21, 1, 10.1007/BF01211647 Subramanian, 2016, Robust MRAC augmented baseline LQR for tracking control of 2 dof helicopter, Robot. Auton. Syst., 86, 70, 10.1016/j.robot.2016.08.004 Torres, 2018, State-space recursive fuzzy modeling approach based on evolving data clustering, J. Control Autom. Electr. Syst., 29, 426, 10.1007/s40313-018-0393-8 Tung, 2013, eT2Fis: An evolving type-2 neural fuzzy inference system, Inform. Sci., 220, 124, 10.1016/j.ins.2012.02.031 Wang, 2019, Parameter optimization of interval type-2 fuzzy neural networks based on PSO and BBBC methods, IEEE/CAA J. Autom. Sin., 6, 247, 10.1109/JAS.2019.1911348 Wang, 2019, Synchronization and identification of nonlinear systems by using a novel self-evolving interval type-2 fuzzy LSTM-neural network, Eng. Appl. Artif. Intell., 81, 79, 10.1016/j.engappai.2019.02.002 Wu, 2013, Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: Overview and comparisons, IEEE Trans. Fuzzy Syst., 21, 80, 10.1109/TFUZZ.2012.2201728 Wu, 2002, Introduction to uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems Wu, 2015, A novel on-line observer/kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems, J. Franklin Inst. B, 352, 1119, 10.1016/j.jfranklin.2014.12.004 Yager, 1990, A model of participatory learning, IEEE Trans. Syst Man Cybern., 20, 1229, 10.1109/21.59986