Type-2 fuzzy instrumental variable algorithm for evolving neural-fuzzy modeling of nonlinear dynamic systems in noisy environment
Tài liệu tham khảo
Abiyev, 2013, A type-2 fuzzy wavelet neural network for system identification and control, J. Franklin Inst. B, 350, 1658, 10.1016/j.jfranklin.2013.04.020
Angelov, 2012
Antonelli, 2017, Multiobjective evolutionary optimization of type-2 fuzzy rule-based systems for financial data classification, IEEE Trans. Fuzzy Syst., 25, 249, 10.1109/TFUZZ.2016.2578341
Babuska, 1998
Chatterjee, 2008, Augmented stable fuzzy control for flexible robotic arm using LMI approach and neuro-fuzzy state space modeling, IEEE Trans. Ind. Electron., 55, 1256, 10.1109/TIE.2007.896439
Chiuso, 2005, Consistency analysis of some closed-loop subspace identification methods, Automatica, 41, 377, 10.1016/j.automatica.2004.10.015
Ding, 2007, Auxiliary model-based least-squares identification methods for Hammerstein output-error systems, Systems Control Lett., 56, 373, 10.1016/j.sysconle.2006.10.026
Evangelista, 2019, Multivariable state-space recursive identification algorithm based on evolving type-2 neural-fuzzy inference system, J. Control Autom. Electr. Syst., 30, 921, 10.1007/s40313-019-00528-0
Evangelista, 2020, State space black-box modelling via Markov parameters based on evolving type-2 neural-fuzzy inference system for nonlinear multivariable dynamic systems, Fuzzy Sets and Systems, 394, 1, 10.1016/j.fss.2019.08.013
Filho, 2018, Recursive fuzzy instrumental variable based evolving neuro-fuzzy identification for non-stationary dynamic system in a noisy environment, Fuzzy Sets and Systems, 338, 50, 10.1016/j.fss.2017.05.016
Freire, 2016, Predicting buildings corners hygrothermal behavior by using a fuzzy inference system combined with clustering and Kalman filter, Int. Commun. Heat Mass Transfer, 71, 225, 10.1016/j.icheatmasstransfer.2015.12.015
Hagras, 2004, A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Trans. Fuzzy Syst., 12, 524, 10.1109/TFUZZ.2004.832538
Haykin, 2001
Houtzager, 2012, Recursive predictor-based subspace identification with application to the real-time closed-loop tracking of flutter, IEEE Trans. Control Syst. Technol., 20, 934, 10.1109/TCST.2011.2157694
Jer-Nan Juang, 2011
Juang, 2008, A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning, IEEE Trans. Fuzzy Syst., 16, 1411, 10.1109/TFUZZ.2008.925907
Júnior, 2017, A novel intelligent approach for state space evolving forecasting of seasonal time series, Eng. Appl. Artif. Intell., 64, 272, 10.1016/j.engappai.2017.06.016
Karnik, 1999, Type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst., 7, 643, 10.1109/91.811231
Kayacan, 2015, Identification of nonlinear dynamic systems using type-2 fuzzy neural networks,a novel learning algorithm and a comparative study, IEEE Trans. Ind. Electron., 62, 1716, 10.1109/TIE.2014.2345353
Khanesar, 2012, Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation, IEEE Trans. Ind. Electron., 59, 4443, 10.1109/TIE.2011.2151822
Kumar, 2017, Evolving an interval type-2 fuzzy PID controller for the redundant robotic manipulator, Expert Syst. Appl., 73, 161, 10.1016/j.eswa.2016.12.029
Lee, 2014, An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization, IEEE Trans. Cybern., 44, 329, 10.1109/TCYB.2013.2254113
Lemos, 2011, Multivariable Gaussian evolving fuzzy modeling system, IEEE Trans. Fuzzy Syst., 19, 91, 10.1109/TFUZZ.2010.2087381
Li, 2017, Fuzzy observer-based fault detection design approach for nonlinear processes, IEEE Trans. Syst. Man Cybern. Syst., 47, 1941, 10.1109/TSMC.2016.2576453
Li, 2017, Neuro-fuzzy based identification method for Hammerstein output error model with colored noise, Neurocomputing, 244, 90, 10.1016/j.neucom.2017.03.026
Li, 2015, Control of nonlinear networked systems with packet dropouts: Interval type-2 fuzzy model-based approach, IEEE Trans. Cybern., 45, 2378, 10.1109/TCYB.2014.2371814
Liang, 2000, Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters, IEEE Trans. Fuzzy Syst., 8, 551, 10.1109/91.873578
Liang, 2000, Interval type-2 fuzzy logic systems: theory and design, IEEE Trans. Fuzzy Syst., 8, 535, 10.1109/91.873577
Lin, 2013, A mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS) with self-evolving structure and parameters, IEEE Trans. Fuzzy Syst., 21, 492, 10.1109/TFUZZ.2013.2255613
Lin, 2018, Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control, Neurocomputing, 275, 2239, 10.1016/j.neucom.2017.11.009
Lin, 2014, Simplified interval type-2 fuzzy neural networks, IEEE Trans. Neural Netw. Learn. Syst., 25, 959, 10.1109/TNNLS.2013.2284603
Lin, 2015, An interval type-2 neural fuzzy system for online system identification and feature elimination, IEEE Trans. Neural Netw. Learn. Syst., 26, 1442, 10.1109/TNNLS.2014.2346537
Ljung, 1999
Ni, 2018, Identification of the time-varying modal parameters of a spacecraft with flexible appendages using a recursive predictor-based subspace identification algorithm, Proc. Inst. Mech. Eng. G, 1
NI, 2018, Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method, Chin. J. Aeronaut.
Nie, 2008, Towards an efficient type-reduction method for interval type-2 fuzzy logic systems
Nise, 2015
Oscar Castillo, 2007
Páramo-Carranza, 2017, Discrete-time Kalman filter for Takagi Sugeno fuzzy models, Evol. Syst., 8, 211, 10.1007/s12530-017-9181-0
Pires, 2018, An approach for fuzzy Kalman filter modeling based on evolving clustering of experimental data, J. Intell. Fuzzy Systems, 35, 1819, 10.3233/JIFS-17087
Pratama, 2017, An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks, IEEE Trans. Fuzzy Syst., 25, 1175, 10.1109/TFUZZ.2016.2599855
Sadala, 2018, A new continuous sliding mode control approach with actuator saturation for control of 2-DOF helicopter system, ISA Trans., 74, 165, 10.1016/j.isatra.2018.01.027
Samadi, 2017, State-space modeling and observer design of Li-Ion batteries using Takagi-Sugeno fuzzy system, IEEE Trans. Control Syst. Technol., 25, 301, 10.1109/TCST.2016.2549270
Santos, 2018, Recursive identification approach of multivariable nonlinear dynamic systems based on evolving fuzzy Hammerstein models
dos Santos Coelho, 2009, Identification of the Hénon chaotic map by fuzzy modeling and Nelder Mead simplex method, Chaos Solitons Fractals, 41, 2762, 10.1016/j.chaos.2008.10.013
dos Santos Coelho, 2017, Fuzzy inference system approach using clustering and differential evolution optimization applied to identification of a twin rotor system, IFAC-PapersOnLine, 50, 13102, 10.1016/j.ifacol.2017.08.2162
Serra, 2007, An IV-QR algorithm for neuro-fuzzy multivariable online identification, IEEE Trans. Fuzzy Syst., 15, 200, 10.1109/TFUZZ.2006.879997
Serra, 2009, Fuzzy instrumental variable approach for nonlinear discrete-time systems identification in a noisy environment, Fuzzy Sets and Systems, 160, 500, 10.1016/j.fss.2008.06.020
Silva, 2014, Real-time nonlinear modeling of a twin rotor MIMO system using evolving neuro-fuzzy network
Soderstrom, 2002, Instrumental variable methods for system identification, Circuits Systems Signal Process., 21, 1, 10.1007/BF01211647
Subramanian, 2016, Robust MRAC augmented baseline LQR for tracking control of 2 dof helicopter, Robot. Auton. Syst., 86, 70, 10.1016/j.robot.2016.08.004
Torres, 2018, State-space recursive fuzzy modeling approach based on evolving data clustering, J. Control Autom. Electr. Syst., 29, 426, 10.1007/s40313-018-0393-8
Tung, 2013, eT2Fis: An evolving type-2 neural fuzzy inference system, Inform. Sci., 220, 124, 10.1016/j.ins.2012.02.031
Wang, 2019, Parameter optimization of interval type-2 fuzzy neural networks based on PSO and BBBC methods, IEEE/CAA J. Autom. Sin., 6, 247, 10.1109/JAS.2019.1911348
Wang, 2019, Synchronization and identification of nonlinear systems by using a novel self-evolving interval type-2 fuzzy LSTM-neural network, Eng. Appl. Artif. Intell., 81, 79, 10.1016/j.engappai.2019.02.002
Wu, 2013, Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: Overview and comparisons, IEEE Trans. Fuzzy Syst., 21, 80, 10.1109/TFUZZ.2012.2201728
Wu, 2002, Introduction to uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems
Wu, 2015, A novel on-line observer/kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems, J. Franklin Inst. B, 352, 1119, 10.1016/j.jfranklin.2014.12.004
Yager, 1990, A model of participatory learning, IEEE Trans. Syst Man Cybern., 20, 1229, 10.1109/21.59986
