Two-tangent-impulse flyby of space target from an elliptic initial orbit
Tài liệu tham khảo
Arlulkar, 2014, Dynamical approach for optimal two-impulse rendezvous between elliptic orbits, J. Guidance Control Dyn., 37, 1008, 10.2514/1.61823
Avanzini, 2008, A simple lambert algorithm, J. Guidance Control Dyn., 31, 1587, 10.2514/1.36426
Battin, 1977, Lambert’s Problem Revisited, AIAA J., 15, 707, 10.2514/3.60680
Battin, 1984, An elegant lambert algorithm, J. Guidance Control Dyn., 7, 662, 10.2514/3.19910
Battin, 1978, A new transformation invariant in the orbital boundary-value problem, J Guidance Control, 1, 50, 10.2514/3.21004
Dang, 2015, Improved initialization conditions and single impulsive maneuvers for J2-invariant relative orbits, Celestial Mech. Dyn. Astron., 121, 301, 10.1007/s10569-014-9601-4
Guo, 2005, New horizons Pluto–Kuiper Belt missions: design and simulation of the Pluto-Charon encounter, Acta Astronaut., 56, 421, 10.1016/j.actaastro.2004.05.076
He, 2010, Multiple-revolution of the transverse eccentricity based lambert problem, J. Guidance Control Dyn., 33, 265, 10.2514/1.45041
Jiang, 2015, Development of the new approach of formation initialization using spring separation mechanism considering J2 perturbation, Adv. Space Res., 55, 2616, 10.1016/j.asr.2015.02.019
Lawden, 1962, Impulsive transfer between elliptical orbits
Lawden, 1963
Lawden, 1992, Optimal transfers between coplanar elliptical orbits, J. Guidance Control Dyn., 15, 788, 10.2514/3.20909
Lawden, 1993, Time-closed optimal transfer by two impulses between coplanar elliptical orbits, J. Guidance Control Dyn., 16, 585, 10.2514/3.21049
Nelson, 1992, Alternative approach to the solution of Lambert’s Problem, J. Guidance Control Dyn., 15, 1003, 10.2514/3.20935
Prussing, 1969, Optimal four-impulse fixed-time rendezvous in the vicinity of a circular orbit, AIAA J., 7, 928, 10.2514/3.5246
Prussing, 1970, Optimal Two- and Three-impulse fixed-time rendezvous in the vicinity of a circular orbit, AIAA J., 8, 1221, 10.2514/3.5876
Prussing, 2000, A class of optimal two-impulse rendezvous using multiple revolution lambert solution, J. Astronaut. Sci., 42, 131, 10.1007/BF03546273
Prussing, 1986, Optimal multiple-impulse time-fixed rendezvous between circular orbits, J. Guidance Control Dyn., 9, 17, 10.2514/3.20060
Sconzo, 1962, The use of Lambert’s theorem in orbit determination, Astron. J., 67, 19, 10.1086/108599
Shen, 2003, Optimal two-impulse rendezvous using multiple-revolution lambert solutions, J. Guidance Control Dyn., 26, 50, 10.2514/2.5014
Tan, 2010, Research on multiple-revolution Lambert problem in the spacecraft rendezvous, J. Nat. Univ. Defense Technol., 32, 12
Wailliez, 2014, On lambert’s problem and the elliptic time of flight equation: a simple semi-analytical inversion method, Adv. Space Res., 53, 890, 10.1016/j.asr.2013.12.033
Wang, 2007, Design and verification of a robust formation keeping controller, Acta Astronaut., 61, 565, 10.1016/j.actaastro.2007.01.064
Zhang, 2015, Space traffic safety management and control, IEEE Trans. Intell. Transp. Syst., 1
Zhang, 2012, Tangent orbital rendezvous with the same direction of terminal velocity, J. Guidance Control Dyn., 35, 335, 10.2514/1.54586
Zhang, 2012, Analytical study of tangent orbit and conditions for its solution existence, J. Guidance Control Dyn., 35, 186, 10.2514/1.53396
Zhang, 2013, Optimal two-impulse cotangent rendezvous between coplanar elliptical orbits, J. Guidance Control Dyn., 36, 677, 10.2514/1.59191
Zhang, 2014, Two-Impulse cotangent rendezvous between coplanar elliptic and hyperbolic orbits, J. Guidance Control Dyn., 37, 964, 10.2514/1.62477
Zhao, 2014, A research on the Imaging strategy and imaging simulation of Toutatis in the Chang’e-2 flyby mission, Chin. Astron. Astrophy, 38, 163, 10.1016/j.chinastron.2014.04.004
Zhou, 2015, Mission planning optimization for the visual inspection of multiple geosynchronous satellites, Engin. Optim., 47, 1543, 10.1080/0305215X.2014.979813