Two-step doping of SiO2 and CaO for high-frequency MnZn power ferrites

Journal of the European Ceramic Society - Tập 43 - Trang 2469-2478 - 2023
Jiafeng Xu1, Guohua Bai1,2, Xiuyuan Fan1, Zhenhua Zhang2, Xiaolian Liu2, Mi Yan1
1School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
2Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China

Tài liệu tham khảo

Sugimoto, 1999, The past, present, and future of ferrites, J. Am. Ceram. Soc., 82, 269, 10.1111/j.1551-2916.1999.tb20058.x Skolyszewska, 2003, Preparation and magnetic properties of MgZn and MnZn ferrites, Physica C, 387, 290, 10.1016/S0921-4534(03)00696-8 Ohta, 1963, Magnetocrystalline anisotropy and magnetic permeability of Mn-Zn-Fe ferrites, J. Phys. Soc. Jpn., 18, 685, 10.1143/JPSJ.18.685 Thakur, 2020, A review on MnZn ferrites: synthesis, characterization and applications, Ceram. Int., 46, 15740, 10.1016/j.ceramint.2020.03.287 Yan, 2004, Plasma-sprayed MnZn ferrites with insulated fine grains and increased resistivity for high-frequency applications, IEEE Trans. Magn., 40, 3346, 10.1109/TMAG.2004.831658 Soga, 2004, 567 Wang, 2019, Effect of calcination temperature on magnetic properties of mnzn ferrites for high frequency applications, J. Magn., 24, 628, 10.4283/JMAG.2019.24.4.628 Zaspalis, 2013 Guang, 2007, Soft ferrites for automotive electronics, J. Magn. Magn. Mater., 38, 7 Konig, 1975, Improved manganese-zinc ferrites for power transformers, IEEE Trans. Magn., 11, 1306, 10.1109/TMAG.1975.1058907 Pardavi-Horvath, 2000, Microwave applications of soft ferrites, J. Magn. Magn. Mater., 215, 171, 10.1016/S0304-8853(00)00106-2 Clarke, 2022, Development of a variable frequency, low current, low volume hysteresis loop tracer, J. Magn. Magn. Mater., 552, 10.1016/j.jmmm.2022.169249 Dimitrijev, 2015, Power-switching applications beyond silicon: Status and future prospects of SiC and GaN devices, MRS Bull., 40, 399, 10.1557/mrs.2015.89 Iacopi, 2015, Power electronics with wide bandgap materials: toward greener, more efficient technologies, MRS Bull., 40, 390, 10.1557/mrs.2015.71 Wang, 2016, Magnetostriction properties of oriented polycrystalline CoFe2O4, J. Magn. Magn. Mater., 401, 662, 10.1016/j.jmmm.2015.10.073 Mathur, 2009, Impact of processing and polarization on dielectric behavior of NixMn0.4−xZn0.6Fe2O4 spinel ferrites, Int. J. Mod. Phys. B, 23, 2523, 10.1142/S0217979209052212 Wang, 2019, Effects of second milling time to the core loss of MnZn ferrites for high frequency application, Physica B, 552, 6, 10.1016/j.physb.2018.09.035 Ying, 2021, Low temperature sintered MnZn ferrites for power applications at the frequency of 1 MHz, J. Eur. Ceram. Soc., 41, 5924, 10.1016/j.jeurceramsoc.2021.05.013 Nakamura, 1997, Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra, J. Magn. Magn. Mater., 168, 285, 10.1016/S0304-8853(96)00709-3 Andalib, 2020, Grain boundary engineering of power inductor cores for MHz applications, J. Alloy. Compd., 832, 10.1016/j.jallcom.2019.153131 Znidarsic, 1999, High-resistivity grain boundaries in CaO-doped MnZn ferrites for high-frequency power application, J. Am. Ceram. Soc., 82, 359, 10.1111/j.1551-2916.1999.tb20070.x Fidler, 1979, Nucleation and pinning of magnetic domains at Co7Sm2 precipitates in Co5Sm crystals, Phys. Status Solidi A, 56, 545, 10.1002/pssa.2210560219 vanderZaag, 1996, A domain size effect in the magnetic hysteresis of NiZn-ferrites, Appl. Phys. Lett., 69, 2927, 10.1063/1.117326 Jeong, 2002, Effects of grain size on the residual loss of Mn-Zn ferrites, Jpn. J. Appl. Phys., 91, 7619, 10.1063/1.1447506 Huse, 1985, Pinning and roughening of domain-walls in ising systems due to random impurities, Phys. Rev. Lett., 54, 2708, 10.1103/PhysRevLett.54.2708 Hussain, 2019, Co2O3 and SnO2 doped MnZn ferrites for applications at 3–5 MHz frequencies, Ceram. Int., 45, 12544, 10.1016/j.ceramint.2019.03.193 Wang, 2021, Correlating the microstructure and magnetic properties of MnZn power ferrites via Co2O3 and MoO3 co-doping for MHz applications, J. Magn. Magn. Mater., 538, 10.1016/j.jmmm.2021.168324 Fan, 2022, Synergistic effect of V2O5 and Bi2O3 on the grain boundary structure of high-frequency NiCuZn ferrite ceramics, J. Adv. Ceram., 11, 912, 10.1007/s40145-022-0585-3 Vladikova, 1989, Influence of the microstructure on some microwave properties of substituted nickel ferrites, Phys. Status Solidi A, 111, 145, 10.1002/pssa.2211110115 Yan, 2021, High-frequency MnZn soft magnetic ferrite by engineering grain boundaries with multiple-ion doping, J. Mater. Sci. Technol., 79, 165, 10.1016/j.jmst.2020.12.009 Nakata, 1985, Microscopic study of grain-boundary region in polycrystalline ferrites, Jpn. J. Appl. Phys., 57, 4177, 10.1063/1.334603 Tsunekawa, 1979, Microstructure and properties of commercial grade manganese zinc ferrites, IEEE Trans. Magn., 15, 1855, 10.1109/TMAG.1979.1060382 Akashi, 1961, Effect of the addition of CaO and SiO2 on the magnetic characteristics and microstructures of Manganese-Zinc ferrites (Mn0.68Zn0.21Fe2.11O4+δ), Trans. Jpn. Inst. Met., 2, 171, 10.2320/matertrans1960.2.171 Ebisawa, 1997, Bioactivity of ferrimagnetic glass-ceramics in the system FeO-Fe2O3-CaO-SiO2, Biomaterials, 18, 1277, 10.1016/S0142-9612(97)00067-7 Lee, 2004, Misorientation distribution of a Mn-Zn ferrite sample with abnormal grain growth, J. Ceram. Process Res., 5, 179 Shokrollahi, 2007, Influence of additives on the magnetic properties, microstructure and densification of Mn-Zn soft ferrites, Mater. Sci. Eng. B Adv., 141, 91, 10.1016/j.mseb.2007.06.005 Yan, 1978, Impurity-induced exaggerated grain-growth in mn-zn ferrites, J. Am. Ceram. Soc., 61, 342, 10.1111/j.1151-2916.1978.tb09325.x Huang, 2018, From core-shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering, J. Mater. Chem. A, 6, 4477, 10.1039/C7TA10821D Dang, 2010, Sonochemical coating of magnetite nanoparticles with silica, Ultrason. Sonochem., 17, 193, 10.1016/j.ultsonch.2009.05.013 Morineau, 1975, Chart of PO2 versus temperature and oxidation degree for Mn-Zn ferrites in composition range - 50 < Fe2O3< 54; 20 < MnO < 35; 11 < ZnO < 30 (mole %), IEEE Trans. Magn., 11, 1312, 10.1109/TMAG.1975.1058882 Gotoh Fujita, 2003, Temperature dependence of core loss in Co-substituted MnZn ferrites, J. Appl. Phys., 93, 7477, 10.1063/1.1557952 Jayanth, 1989, Factors affecting particle-coarsening kinetics and size distribution, J. Mater. Sci., 24, 3041, 10.1007/BF01139016 Decker, 1957, The structure of calcium ferrite, Acta Crystallogr., 10, 332, 10.1107/S0365110X5700095X Millon, 1986, Hemicalcic ferrite CaFe4O7 crystal-structure, Mater. Res. Bull., 21, 985, 10.1016/0025-5408(86)90136-4 Cumming, 1990, Developments in modeling and simulation of iron-ore sintering, Ironmak. Steelmak., 17, 245 Park, 2022, A short review of the effect of iron ore selection on mineral phases of iron ore sinter, Minerals, 12, 10.3390/min12010035 Matsuno, 1981, Changes of mineral phases during the sintering of iron-ore lime stone systems, Trans. Iron Steel Inst. Jpn., 21, 318, 10.2355/isijinternational1966.21.318 Liu, 2020, Microstructures and magnetic properties of Co-substituted Ce-Fe-B amorphous alloys, J. Alloy. Compd., 820, 10.1016/j.jallcom.2019.153098