Two-step doping of SiO2 and CaO for high-frequency MnZn power ferrites
Tài liệu tham khảo
Sugimoto, 1999, The past, present, and future of ferrites, J. Am. Ceram. Soc., 82, 269, 10.1111/j.1551-2916.1999.tb20058.x
Skolyszewska, 2003, Preparation and magnetic properties of MgZn and MnZn ferrites, Physica C, 387, 290, 10.1016/S0921-4534(03)00696-8
Ohta, 1963, Magnetocrystalline anisotropy and magnetic permeability of Mn-Zn-Fe ferrites, J. Phys. Soc. Jpn., 18, 685, 10.1143/JPSJ.18.685
Thakur, 2020, A review on MnZn ferrites: synthesis, characterization and applications, Ceram. Int., 46, 15740, 10.1016/j.ceramint.2020.03.287
Yan, 2004, Plasma-sprayed MnZn ferrites with insulated fine grains and increased resistivity for high-frequency applications, IEEE Trans. Magn., 40, 3346, 10.1109/TMAG.2004.831658
Soga, 2004, 567
Wang, 2019, Effect of calcination temperature on magnetic properties of mnzn ferrites for high frequency applications, J. Magn., 24, 628, 10.4283/JMAG.2019.24.4.628
Zaspalis, 2013
Guang, 2007, Soft ferrites for automotive electronics, J. Magn. Magn. Mater., 38, 7
Konig, 1975, Improved manganese-zinc ferrites for power transformers, IEEE Trans. Magn., 11, 1306, 10.1109/TMAG.1975.1058907
Pardavi-Horvath, 2000, Microwave applications of soft ferrites, J. Magn. Magn. Mater., 215, 171, 10.1016/S0304-8853(00)00106-2
Clarke, 2022, Development of a variable frequency, low current, low volume hysteresis loop tracer, J. Magn. Magn. Mater., 552, 10.1016/j.jmmm.2022.169249
Dimitrijev, 2015, Power-switching applications beyond silicon: Status and future prospects of SiC and GaN devices, MRS Bull., 40, 399, 10.1557/mrs.2015.89
Iacopi, 2015, Power electronics with wide bandgap materials: toward greener, more efficient technologies, MRS Bull., 40, 390, 10.1557/mrs.2015.71
Wang, 2016, Magnetostriction properties of oriented polycrystalline CoFe2O4, J. Magn. Magn. Mater., 401, 662, 10.1016/j.jmmm.2015.10.073
Mathur, 2009, Impact of processing and polarization on dielectric behavior of NixMn0.4−xZn0.6Fe2O4 spinel ferrites, Int. J. Mod. Phys. B, 23, 2523, 10.1142/S0217979209052212
Wang, 2019, Effects of second milling time to the core loss of MnZn ferrites for high frequency application, Physica B, 552, 6, 10.1016/j.physb.2018.09.035
Ying, 2021, Low temperature sintered MnZn ferrites for power applications at the frequency of 1 MHz, J. Eur. Ceram. Soc., 41, 5924, 10.1016/j.jeurceramsoc.2021.05.013
Nakamura, 1997, Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra, J. Magn. Magn. Mater., 168, 285, 10.1016/S0304-8853(96)00709-3
Andalib, 2020, Grain boundary engineering of power inductor cores for MHz applications, J. Alloy. Compd., 832, 10.1016/j.jallcom.2019.153131
Znidarsic, 1999, High-resistivity grain boundaries in CaO-doped MnZn ferrites for high-frequency power application, J. Am. Ceram. Soc., 82, 359, 10.1111/j.1551-2916.1999.tb20070.x
Fidler, 1979, Nucleation and pinning of magnetic domains at Co7Sm2 precipitates in Co5Sm crystals, Phys. Status Solidi A, 56, 545, 10.1002/pssa.2210560219
vanderZaag, 1996, A domain size effect in the magnetic hysteresis of NiZn-ferrites, Appl. Phys. Lett., 69, 2927, 10.1063/1.117326
Jeong, 2002, Effects of grain size on the residual loss of Mn-Zn ferrites, Jpn. J. Appl. Phys., 91, 7619, 10.1063/1.1447506
Huse, 1985, Pinning and roughening of domain-walls in ising systems due to random impurities, Phys. Rev. Lett., 54, 2708, 10.1103/PhysRevLett.54.2708
Hussain, 2019, Co2O3 and SnO2 doped MnZn ferrites for applications at 3–5 MHz frequencies, Ceram. Int., 45, 12544, 10.1016/j.ceramint.2019.03.193
Wang, 2021, Correlating the microstructure and magnetic properties of MnZn power ferrites via Co2O3 and MoO3 co-doping for MHz applications, J. Magn. Magn. Mater., 538, 10.1016/j.jmmm.2021.168324
Fan, 2022, Synergistic effect of V2O5 and Bi2O3 on the grain boundary structure of high-frequency NiCuZn ferrite ceramics, J. Adv. Ceram., 11, 912, 10.1007/s40145-022-0585-3
Vladikova, 1989, Influence of the microstructure on some microwave properties of substituted nickel ferrites, Phys. Status Solidi A, 111, 145, 10.1002/pssa.2211110115
Yan, 2021, High-frequency MnZn soft magnetic ferrite by engineering grain boundaries with multiple-ion doping, J. Mater. Sci. Technol., 79, 165, 10.1016/j.jmst.2020.12.009
Nakata, 1985, Microscopic study of grain-boundary region in polycrystalline ferrites, Jpn. J. Appl. Phys., 57, 4177, 10.1063/1.334603
Tsunekawa, 1979, Microstructure and properties of commercial grade manganese zinc ferrites, IEEE Trans. Magn., 15, 1855, 10.1109/TMAG.1979.1060382
Akashi, 1961, Effect of the addition of CaO and SiO2 on the magnetic characteristics and microstructures of Manganese-Zinc ferrites (Mn0.68Zn0.21Fe2.11O4+δ), Trans. Jpn. Inst. Met., 2, 171, 10.2320/matertrans1960.2.171
Ebisawa, 1997, Bioactivity of ferrimagnetic glass-ceramics in the system FeO-Fe2O3-CaO-SiO2, Biomaterials, 18, 1277, 10.1016/S0142-9612(97)00067-7
Lee, 2004, Misorientation distribution of a Mn-Zn ferrite sample with abnormal grain growth, J. Ceram. Process Res., 5, 179
Shokrollahi, 2007, Influence of additives on the magnetic properties, microstructure and densification of Mn-Zn soft ferrites, Mater. Sci. Eng. B Adv., 141, 91, 10.1016/j.mseb.2007.06.005
Yan, 1978, Impurity-induced exaggerated grain-growth in mn-zn ferrites, J. Am. Ceram. Soc., 61, 342, 10.1111/j.1151-2916.1978.tb09325.x
Huang, 2018, From core-shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering, J. Mater. Chem. A, 6, 4477, 10.1039/C7TA10821D
Dang, 2010, Sonochemical coating of magnetite nanoparticles with silica, Ultrason. Sonochem., 17, 193, 10.1016/j.ultsonch.2009.05.013
Morineau, 1975, Chart of PO2 versus temperature and oxidation degree for Mn-Zn ferrites in composition range - 50 < Fe2O3< 54; 20 < MnO < 35; 11 < ZnO < 30 (mole %), IEEE Trans. Magn., 11, 1312, 10.1109/TMAG.1975.1058882
Gotoh Fujita, 2003, Temperature dependence of core loss in Co-substituted MnZn ferrites, J. Appl. Phys., 93, 7477, 10.1063/1.1557952
Jayanth, 1989, Factors affecting particle-coarsening kinetics and size distribution, J. Mater. Sci., 24, 3041, 10.1007/BF01139016
Decker, 1957, The structure of calcium ferrite, Acta Crystallogr., 10, 332, 10.1107/S0365110X5700095X
Millon, 1986, Hemicalcic ferrite CaFe4O7 crystal-structure, Mater. Res. Bull., 21, 985, 10.1016/0025-5408(86)90136-4
Cumming, 1990, Developments in modeling and simulation of iron-ore sintering, Ironmak. Steelmak., 17, 245
Park, 2022, A short review of the effect of iron ore selection on mineral phases of iron ore sinter, Minerals, 12, 10.3390/min12010035
Matsuno, 1981, Changes of mineral phases during the sintering of iron-ore lime stone systems, Trans. Iron Steel Inst. Jpn., 21, 318, 10.2355/isijinternational1966.21.318
Liu, 2020, Microstructures and magnetic properties of Co-substituted Ce-Fe-B amorphous alloys, J. Alloy. Compd., 820, 10.1016/j.jallcom.2019.153098