Two-stage hybrid feature selection algorithms for diagnosing erythemato-squamous diseases

Juanying Xie1, Jinhu Lei1, Weixin Xie2, Yong Shi3, Xiaohui Liu4
1School of Computer Science, Shaanxi Normal University, Xi'an 710062, China
2School of Information Engineering, Shenzhen University, Shenzhen, 518060, China
3CAS Research Centre of Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing, 100080, China
4School of Information Systems, Computing and Mathematics, Brunel University, London UB8 3PH, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Güvenir HA, Demiröz G, Ílter N: Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals. Artif Intell Med. 1998, 13: 147-165. 10.1016/S0933-3657(98)00028-1.

Güvenir HA, Emeksiz N: An expert system for the differential diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2000, 18: 43-49. 10.1016/S0957-4174(99)00049-4.

Übeyli ED, Güler I: Automatic detection of erythemato-squamous diseases using adaptive neuro-fuzzy inference systems. Comput Biol Med. 2005, 35: 421-433. 10.1016/j.compbiomed.2004.03.003.

Luukka P, Leppälampi T: Similarity classifier with generalized mean applied to medical data. Comput Biol Med. 2006, 36: 1026-1040. 10.1016/j.compbiomed.2005.05.008.

Polat K, Günes S: The effect to diagnostic accuracy of decision tree classifier of fuzzy and k-NN based weighted pre-processing methods to diagnosis of erythemato-squamous diseases. Digit Signal Process. 2006, 16: 922-930. 10.1016/j.dsp.2006.04.007.

Nanni L: An ensemble of classifiers for the diagnosis of erythemato-squamous diseases. Neurocomputing. 2006, 69: 842-845. 10.1016/j.neucom.2005.09.007.

Luukka P: Similarity classifier using similarity measure derived from Yu’s norms in classification of medical data sets. Comput Biol Med. 2007, 37: 1133-1140. 10.1016/j.compbiomed.2006.10.005.

Übeyli ED: Multiclass support vector machines for diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2008, 35: 1733-1740. 10.1016/j.eswa.2007.08.067.

Polat K, Günes S: A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems. Expert Syst Appl. 2009, 36: 1587-1592. 10.1016/j.eswa.2007.11.051.

Übeyli ED: Combined neural networks for diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2009, 36: 5107-5112. 10.1016/j.eswa.2008.06.002.

Übeyli ED, Doǧdu E: Automatic detection of erythemato-squamous diseases using k-Means clustering. J Med Syst. 2010, 34: 179-184. 10.1007/s10916-008-9229-6.

Liu HW, Sun JG: Feature selection with dynamic mutual information. Pattern Recognit. 2009, 42: 1330-1339. 10.1016/j.patcog.2008.10.028.

Karabatak M, Ince MC: A new feature selection method based on association rules for diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2009, 36: 12500-12505. 10.1016/j.eswa.2009.04.073.

Xie JY, Xie WX, Wang CX, Gao XB: A novel hybrid feature selection method based on IFSFFS and SVM for the diagnosis of erythemato-squamous diseases. Proceedings of the First Workshop on Applications of Pattern Analysis: 1-3 September 2010; Cumberland Lodge, Windsor, UK. Edited by: Cristianini N, Diethe T, Cristianini N, Shawe-Taylor J. 2010, : University of Bristol and University College London and University College London, 142-151.

Xie JY, Wang CX: Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2011, 38: 5809-5815. 10.1016/j.eswa.2010.10.050.

Guyon I, Elisseeff A: An introduction to variable and feature selection. J Mach Learn Res. 2003, 3: 1157-1182.

Fu KS, Min PJ, Li TJ: Feature selection in pattern recognition. IEEE Trans Syst Sci Cybern. 1970, 6: 33-39.

Lin CJ, Chen Y W: Combining svms with various feature selection strategies. Feature Extraction, Foundations and Applications. Edited by: Nikravesh M, Guyon I, Gunn S, Nikravesh M, Zadeh L. 2006, Series Studies in Fuzziness and Soft Computing, Physica-Verlag: Springer, 1-7.

Hua JP, Tembe WD, Dougherty ER: Performance of feature selection methods in the classification of high-dimension data. Pattern Recognit. 2009, 42: 409-424. 10.1016/j.patcog.2008.08.001.

Kohavi R, John G: Wrappers for feature selection. Artif Intell. 1997, 1–2: 273-324.

Blum A, Langley P: Selection of relevant features and examples in machine learning. Artif Intell. 1997, 1–2: 245-271.

Whitney AW: A direct method of nonparametric measurement selection. IEEE Trans Comput. 1971, 20: 1100-1103.

Marill T, Green DM: On the effectiveness of receptors in recognition systems. IEEE Trans Inf Theory. 1963, 9: 11-17. 10.1109/TIT.1963.1057810.

Pudil P, Novovicova J, Kittler J: Floating search method in feature selection. Pattern Recognit Lett. 1994, 15: 119-1254.

Asuncion A, Newman DJ: UCI Machine, Learning Repository. 2007, Irvine: University of California, School of Information and Computer Science, [http://www.ics.uci.edu/~mlearn/MLRepository.html]

Chang CC, Lin CJ: LIBSVM :a library for support vector machines. ACM Trans Intell Syst Technol. 2011, 2: 1-27. Software available at [http://www.csie.ntu.edu.tw/~cjlin/libsvm]