Two-stage hybrid feature selection algorithms for diagnosing erythemato-squamous diseases
Tóm tắt
Từ khóa
Tài liệu tham khảo
Güvenir HA, Demiröz G, Ílter N: Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals. Artif Intell Med. 1998, 13: 147-165. 10.1016/S0933-3657(98)00028-1.
Güvenir HA, Emeksiz N: An expert system for the differential diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2000, 18: 43-49. 10.1016/S0957-4174(99)00049-4.
Übeyli ED, Güler I: Automatic detection of erythemato-squamous diseases using adaptive neuro-fuzzy inference systems. Comput Biol Med. 2005, 35: 421-433. 10.1016/j.compbiomed.2004.03.003.
Luukka P, Leppälampi T: Similarity classifier with generalized mean applied to medical data. Comput Biol Med. 2006, 36: 1026-1040. 10.1016/j.compbiomed.2005.05.008.
Polat K, Günes S: The effect to diagnostic accuracy of decision tree classifier of fuzzy and k-NN based weighted pre-processing methods to diagnosis of erythemato-squamous diseases. Digit Signal Process. 2006, 16: 922-930. 10.1016/j.dsp.2006.04.007.
Nanni L: An ensemble of classifiers for the diagnosis of erythemato-squamous diseases. Neurocomputing. 2006, 69: 842-845. 10.1016/j.neucom.2005.09.007.
Luukka P: Similarity classifier using similarity measure derived from Yu’s norms in classification of medical data sets. Comput Biol Med. 2007, 37: 1133-1140. 10.1016/j.compbiomed.2006.10.005.
Übeyli ED: Multiclass support vector machines for diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2008, 35: 1733-1740. 10.1016/j.eswa.2007.08.067.
Polat K, Günes S: A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems. Expert Syst Appl. 2009, 36: 1587-1592. 10.1016/j.eswa.2007.11.051.
Übeyli ED: Combined neural networks for diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2009, 36: 5107-5112. 10.1016/j.eswa.2008.06.002.
Übeyli ED, Doǧdu E: Automatic detection of erythemato-squamous diseases using k-Means clustering. J Med Syst. 2010, 34: 179-184. 10.1007/s10916-008-9229-6.
Liu HW, Sun JG: Feature selection with dynamic mutual information. Pattern Recognit. 2009, 42: 1330-1339. 10.1016/j.patcog.2008.10.028.
Karabatak M, Ince MC: A new feature selection method based on association rules for diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2009, 36: 12500-12505. 10.1016/j.eswa.2009.04.073.
Xie JY, Xie WX, Wang CX, Gao XB: A novel hybrid feature selection method based on IFSFFS and SVM for the diagnosis of erythemato-squamous diseases. Proceedings of the First Workshop on Applications of Pattern Analysis: 1-3 September 2010; Cumberland Lodge, Windsor, UK. Edited by: Cristianini N, Diethe T, Cristianini N, Shawe-Taylor J. 2010, : University of Bristol and University College London and University College London, 142-151.
Xie JY, Wang CX: Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2011, 38: 5809-5815. 10.1016/j.eswa.2010.10.050.
Guyon I, Elisseeff A: An introduction to variable and feature selection. J Mach Learn Res. 2003, 3: 1157-1182.
Fu KS, Min PJ, Li TJ: Feature selection in pattern recognition. IEEE Trans Syst Sci Cybern. 1970, 6: 33-39.
Lin CJ, Chen Y W: Combining svms with various feature selection strategies. Feature Extraction, Foundations and Applications. Edited by: Nikravesh M, Guyon I, Gunn S, Nikravesh M, Zadeh L. 2006, Series Studies in Fuzziness and Soft Computing, Physica-Verlag: Springer, 1-7.
Hua JP, Tembe WD, Dougherty ER: Performance of feature selection methods in the classification of high-dimension data. Pattern Recognit. 2009, 42: 409-424. 10.1016/j.patcog.2008.08.001.
Blum A, Langley P: Selection of relevant features and examples in machine learning. Artif Intell. 1997, 1–2: 245-271.
Whitney AW: A direct method of nonparametric measurement selection. IEEE Trans Comput. 1971, 20: 1100-1103.
Marill T, Green DM: On the effectiveness of receptors in recognition systems. IEEE Trans Inf Theory. 1963, 9: 11-17. 10.1109/TIT.1963.1057810.
Pudil P, Novovicova J, Kittler J: Floating search method in feature selection. Pattern Recognit Lett. 1994, 15: 119-1254.
Asuncion A, Newman DJ: UCI Machine, Learning Repository. 2007, Irvine: University of California, School of Information and Computer Science, [http://www.ics.uci.edu/~mlearn/MLRepository.html]