Phóng xạ hai proton của trạng thái kích thích trong khuôn mẫu Gamow-like và Gamow-like đã sửa đổi

Nuclear Science and Techniques - Tập 33 - Trang 1-10 - 2022
De-Xing Zhu1, Yang-Yang Xu1, Hong-Ming Liu2, Xi-Jun Wu3, Biao He4, Xiao-Hua Li1,5,6,7
1School of Nuclear Science and Technology, University of South China, Hengyang, China
2Institute of Modern Physics, Fudan University, Shanghai, China
3School of Math and Physics, University of South China, Hengyang, China
4College of Physics and Electronics, Central South University, Changsha, China
5National Exemplary Base for International Sci & Tech. Collaboration of Nuclear Energy and Nuclear Safety, University of South China, Hengyang, China
6Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment, University of South China, Hengyang, China
7Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha, China

Tóm tắt

Trong nghiên cứu này, chúng tôi đã điều tra một cách hệ thống thời gian bán rã phóng xạ hai proton ($$\text {2p}$$) từ trạng thái kích thích của các hạt nhân gần đường rỉ proton trong khuôn mẫu Gamow-like (GLM) và khuôn mẫu Gamow-like đã sửa đổi (MGLM). Kết quả được tính toán rất nhất quán với các giá trị lý thuyết thu được bằng cách sử dụng mô hình phân hạch thống nhất [Chin. Phys. C $${\textbf {45}}$$, 124105 (2021)], mô hình giọt chất lỏng hiệu quả và mô hình giọt chất lỏng tổng quát [Acta Phys. Sin $${\textbf {71}}$$, 062301 (2022)]. Hơn nữa, bằng cách sử dụng GLM và MGLM, chúng tôi đã dự đoán thời gian bán rã phóng xạ $$\text {2p}$$ từ trạng thái kích thích cho một số hạt nhân mà chưa có sẵn trong thực nghiệm. Đồng thời, bằng cách phân tích các kết quả tính toán từ các mô hình lý thuyết này, chúng tôi phát hiện rằng thời gian bán rã có sự phụ thuộc mạnh mẽ vào $$Q_\text {2p}$$ và $$\ell$$.

Từ khóa

#phóng xạ hai proton #mô hình Gamow-like #mô hình Gamow-like đã sửa đổi #thời gian bán rã #hạt nhân gần đường rỉ proton

Tài liệu tham khảo

X.D. Sun, P. Guo, X.H. Li, Systematic study of \(\alpha \) decay half-lives for even-even nuclei within a two-potential approach. Phys. Rev. C 93, 034316 (2016). https://doi.org/10.1103/PhysRevC.93.034316 X.D. Sun, P. Guo, X.H. Li, Systematic study of favored \(\alpha \)-decay half-lives of closed shell odd-\(A\) and doubly-odd nuclei related for the ground and isomeric states, respectively. Phys. Rev. C 94, 024338 (2016). https://doi.org/10.1103/PhysRevC.94.024338 C.Z. Shi, Y.G. Ma, \(\alpha \)-clustering effect on flows of direct photons in heavy-ion collisions. Nucl. Sci. Tech. 32, 66 (2021). https://doi.org/10.1007/s41365-021-00897-9 M. Ji, C. Xu, Quantum anti-zeno effect in nuclear \(\beta \) decay. Chin. Phys. Lett. 38, 032301 (2021). https://doi.org/10.1088/0256-307X/38/3/032301 C.W. Ma, H.L. Wei, X.Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). https://doi.org/10.1016/j.ppnp.2021.103911 C.W. Ma, J.P. Wei, X.X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions by using Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). https://doi.org/10.1088/1674-1137/ac5efb L.L. Zhu, B. Wang, M. Wang et al., Energy and centrality dependence of light nuclei production in relativistic heavy-ion collisions. Nucl. Sci. Tech. 33, 45 (2022). https://doi.org/10.1007/s41365-022-01028-8 C. Shen, L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions. Nucl. Sci. Tech. 31, 122 (2020). https://doi.org/10.1007/s41365-020-00829-z F. Zhang, J. Su, Probing neutron-proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region. Nucl. Sci. Tech. 31, 77 (2020). https://doi.org/10.1007/s41365-020-00787-6 Y.J. Wang, F.H. Guan, X.Y. Diao et al., CSHINE for studies of HBT correlation in heavy ion reactions. Nucl. Sci. Tech. 32, 4 (2021). https://doi.org/10.1007/s41365-020-00842-2 P.J. Woods, C.N. Davids, Nuclei beyond the proton drip-line. Annu. Rev. Nucl. Part. Sci. 47, 541 (1977). https://doi.org/10.1146/annurev.nucl.47.1.541 A.A. Sonzogni, Proton radioactivity in \(Z > 50\) nuclides. Nucl. Data. Sheets 95, 1 (2002). https://doi.org/10.1006/ndsh.2002.0001 D.S. Delion, R.J. Liotta, R. Wyss, Systematics of proton emission. Phys. Rep. 424, 113 (2006). https://doi.org/10.1103/PhysRevLett.96.072501 M. Pfützner, M. Karny, L.V. Grigorenko et al., Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567 (2012). https://doi.org/10.1103/RevModPhys.84.567. D. Pathak, P. Singh, H. Parshad, H. Kaur, R. Sudhir, Jain., Quest for two-proton radioactivity. Eur. Phys. J. Plus. 137, 272 (2022). https://doi.org/10.1140/epjp/s13360-022-02354-x L. Zhou, D.Q. Fang, Effect of source size and emission time on the p-p momentum correlation function in the two-proton emission process. Nucl. Sci. Tech. 32, 52 (2020). https://doi.org/10.1007/s41365-020-00759-w L. Zhou, S.M. Wang, D.Q. Fang et al., Recent progress in two-proton radioactivity. Nucl. Sci. Tech. 33, 105 (2022). https://doi.org/10.1007/s41365-022-01091-1 B. Blank, J. Giovinazzo, M. Pfützner, First observation of two-proton radioactivity from an atomic nucleus. Compt. Rend. Phys. 4, 521 (2003). https://doi.org/10.1016/S1631-0705(03)00051-3 Y. B. Zel’dovich, The existence of new isotopes of light nuclei and the equation of state of neutrons. Sov. Phys. JETP 11, 812 (1960). www.jetp.ras.ru/cgi-bin/dn/e_011_04_0812.pdf V.M. Galitsky, V.F. Cheltsov, Two-proton radioactivity theory. Nucl. Phys. 56, 86 (1964). https://doi.org/10.1016/0029-5582(64)90455-9 B. Blank, M. Ploszajczak, Two-proton radioactivity. Rep. Prog. Phys. 71, 046301 (2008). https://doi.org/10.1088/0034-4885/71/4/046301 A. Kruppa, W. Nazarewicz, Gamow and \(R\)-matrix approach to proton emitting nuclei. Phys. Rev. C 69, 054311 (2004). https://doi.org/10.1103/PhysRevC.69.054311 S.M. Wang, W. Nazarewicz, Puzzling Two-Proton Decay of \(^{67}\)Kr. Phys. Rev. Lett. 120, 212502 (2018). https://doi.org/10.1103/PhysRevLett.120.212502 M. Pfützner, E. Badura, C. Bingham et al., First evidence for the two-proton decay of \(^{45}\)Fe. Eur. Phys. J. A 14, 279 (2002). https://doi.org/10.1140/epja/i2002-10033-9 J. Giovinazzo, B. Blank, M. Chartier et al., Two-proton radioactivity of \(^{45}\)Fe. Phys. Rev. Lett. 89, 102501 (2002). https://doi.org/10.1103/PhysRevLett.89.102501 B. Blank, A. Bey, G. Canchel et al., First observation of \(^{54}\)Zn and its decay by two-proton emission. Phys. Rev. Lett. 94, 232501 (2005). https://doi.org/10.1103/PhysRevLett.94.232501 P. Ascher, L. Audirac, N. Adimi et al., Direct Observation of two Protons in the Decay of \(^{54}\)Zn. Phys. Rev. Lett 107, 102502 (2011). https://doi.org/10.1103/PhysRevLett.107.102502 I. Mukha, K. Sümmerer, L. Acosta et al., Observation of two-Proton Radioactivity of \(^{19}\)Mg by Tracking the Decay Products. Phys. Rev. Lett. 99, 182501 (2007). https://doi.org/10.1103/PhysRevLett.99.182501 I. Mukha, E. Roeckl, L. Batist et al., Proton-proton correlations observed in two-proton radioactivity of \(^{94}\)Ag. Nature 439, 298 (2006). https://doi.org/10.1038/nature04453 B. Blank, M. Chartier, S. Czajkowski et al., Discovery of doubly magic \(^{48}\)Ni. Phys. Rev. Lett. 84, 1116 (2000). https://doi.org/10.1103/PhysRevLett.84.1116 M. Pomorski, M. Pfützner, W. Dominik et al., First observation of two-proton radioactivity in \(^48\)Ni. Phys. Rev. C 83, 061303(R) (2011). https://doi.org/10.1103/PhysRevC.83.061303 T. Goigoux, P. Ascher, B. Blank et al., Two-Proton Radioactivity of \(^{67}\)Kr. Phys. Rev. Lett. 117, 162501 (2016). https://doi.org/10.1103/PhysRevLett.117.162501 J. Jänecke, The emission of protons from light neutron-deficient nuclei. Nucl. Phys. 61, 326 (1965). https://doi.org/10.1016/0029-5582(65)90907-7 M.D. Cable, J. Honkanen, R.F. Parry et al., Discovery of Beta-Delayed Two-Proton Radioactivity: \(^{22}\)Al. Phys. Rev. Lett 50, 404 (1983). https://doi.org/10.1103/PhysRevLett.50.404 B. Blank, F. Bouns, S. Andriamonje, Spectroscopic studies of the \(\beta \)p and \(\beta \)2p decay of \(^{23}\)Si. Z. Phys. A. 357, 247 (1997). https://doi.org/10.1007/s002180050241 J. Honkanen, M, D. Cable, R. F. Parry, et al., Beta-delayed two-proton decay of \(^{26}\)P. Phys. Lett. B 133, 146 (1983). https://doi.org/10.1016/0370-2693(83)90547-6 V. Borrel, J.C. Jacmart, F. Pougheon, \(^{31}\)Ar and \(^{27}\)S: Beta-delayed two-proton emission and mass excess. Nucl. Phys. A 531, 353 (1991). https://doi.org/10.1016/0375-9474(91)90616-E C. Dossat, N. Adimi, F. Aksouh et al., The decay of proton-rich nuclei in the mass \(A=36-56\) region. Nucl. Phys. A 792, 18 (2007). https://doi.org/10.1016/j.nuclphysa.2007.05.004 C.R. Bain, P.J. Woods, R. Coszach et al., Two proton emission induced via a resonance reaction. Phys. Lett. B 373, 35 (1996). https://doi.org/10.1016/0370-2693(96)00109-8 M.J. Chromik, B.A. Brown, M. Fauerbach et al., Excitation and decay of the first excited state of \(^{17}\)Ne. Phys. Rev. C 55, 1676 (1997). https://doi.org/10.1103/PhysRevC.55.1676 J. del Gomez del Compo., A. Galindo-Uribarri, J.R. Beene, Decay of a resonance in by the simultaneous emission of two protons. Phys. Rev. Lett. 86, 43 (2001). https://doi.org/10.1103/PhysRevLett.86.43 G. Raciti, G. Cardella, M. De Napoli et al., Experimental evidence of \(^2\)He decay from \(^{18}\)Ne excited states. Phys. Rev. Lett. 100, 192503 (2008). https://doi.org/10.1103/PhysRevLett.100.192503 M.J. Chromik, P.G. Thirolf, M. Thoennessen et al., Two-proton spectroscopy of low-lying states in \(^{17}\)Ne. Phys. Rev. C 66, 024313 (2002). https://doi.org/10.1103/PhysRevC.66.024313 T. Zerguerras, B. Blank, Y. Blumenfeld et al., Study of light proton-rich nuclei by complete kinematics measurements. Eur. Phys. J. A 20, 389 (2004). https://doi.org/10.1140/epja/i2003-10176-1 Y.G. Ma, D.Q. Fang, X.Y. Sun et al., Different mechanism of two-proton emission from proton-rich nuclei \(^{23}\)Al and \(^{22}\)Mg. Phys. Lett. B 743, 306 (2015). https://doi.org/10.1016/j.physletb.2015.02.066 D.Q. Fang, Y.G. Ma, X.Y. Sun et al., Proton-proton correlations in distinguishing the two-proton emission mechanism of \(^{23}\)Al and \(^{22}\)Mg. Phys. Rev. C 94, 044621 (2016). https://doi.org/10.1103/PhysRevC.94.044621 C.J. Lin, X.X. Xu, H.M. Jia et al., Experimental study of two-proton correlated emission from \(^{29}\)S excited states. Phys. Rev. C 80, 014310 (2009). https://doi.org/10.1103/PhysRevC.80.014310 X.X. Xu, C.J. Lin, H.M. Jia et al., Correlations of two protons emitted from excited states of \(^{28}\)S and \(^{27}\)P. Phys. Lett. B 727, 126 (2013). https://doi.org/10.1016/j.physletb.2013.10.029 M. Gonalves, N. Teruya, O. Tavares et al., Two-proton emission half-lives in the effective liquid drop model. Phys. Lett. B 774, 14 (2017). https://doi.org/10.1016/j.physletb.2017.09.032 O.A.P. Tavares, E.L. Medeiros, A calculation model to half-life estimate of two-proton radioactive decay process. Eur. Phys. J. A 54, 65 (2018). https://doi.org/10.1140/epja/i2018-12495-4 Y.Z. Wang, J.P. Cui, Y.H. Gao et al., Two-proton radioactivity of exotic nuclei beyond proton drip-line. Commun. Theor. Phys. 73, 075301 (2021). https://doi.org/10.1088/1572-9494/abfa00 D.X. Zhu, H.M. Liu, Y.Y. Xu et al., Two-proton radioactivity within Coulomb and proximity potential model. Chin. Phys. C 46, 044106 (2022). https://doi.org/10.1088/1674-1137/ac45ef D.S. Delion, R.J. Liotta, R. Wyss, Simple approach to two-proton emission. Phys. Rev. C 87, 034328 (2013). https://doi.org/10.1103/PhysRevC.87.034328 L.V. Grigorenko, R.C. Johnson, I. Mukha et al., Two-proton radioactivity and three-body decay: General problems and theoretical approach. Phys. Rev. C 64, 054002 (2001). https://doi.org/10.1103/PhysRevC.64.054002 A. Adel, A.R. Abdulghany, Proton radioactivity and \(\alpha \)-decay of neutron-deficient nuclei. Phys. Script. 96, 125314 (2021). https://doi.org/10.1088/1402-4896/ac33f6 W. Nan, B. Guo, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of \(^{23}\)Na + \(^{40}\)Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). https://doi.org/10.1007/s41365-021-00889-9 C. Chen, Y.J. Li, H. Zhang et al., Preparation of large-area isotopic magnesium targets for the \(^{25}\)Mg(\(p\),\(\gamma \))\(^{26}\)Al experiment at JUNA. Nucl. Sci. Tech. 31, 91 (2020). https://doi.org/10.1007/s41365-020-00800-y H.C. Manjunatha, N. Sowmya, P.S. Damodara Gupta et al., Investigation of decay modes of superheavy nuclei. Nucl. Sci. Tech. 32, 130 (2021). https://doi.org/10.1007/s41365-021-00967-y L.V. Grigorenko, M.V. Zhukov, Two-proton radioactivity and three-body decay II Exploratory studies of lifetimes and correlations. Phys. Rev. C. 68, 054005 (2003). https://doi.org/10.1103/PhysRevC.68.054005 I. Sreeja, M. Balasubramaniam, An empirical formula for the half-lives of exotic two-proton emission. Eur. Phys. J. A 55, 33 (2019). https://doi.org/10.1140/epja/i2019-12694-5 B.A. Brown, Hybrid model for two-proton radioactivity. Phys. Rev. C 100, 054332 (2019). https://doi.org/10.1103/PhysRevC.100.054332 B.J. Cole, Systematics of proton and diproton separation energies for light nuclei. Phys. Rev. C 56, 1866 (1997). https://doi.org/10.1103/PhysRevC.56.1866 A. Zdeb, M. Warda, K. Pomorski, Half-lives for \(\alpha \) and cluster radioactivity within a Gamow-like model. Phys. Rev. C 87, 024308 (2013). https://doi.org/10.1103/PhysRevC.87.024308 A. Zdeb, M. Warda, C.M. Petrache, K. Pomorski, Proton emission half-lives within a Gamow-like model. Eur. Phys. J. A 52, 323 (2016). https://doi.org/10.1140/epja/i2016-16323-7 H.M. Liu, X. Pan, Y.T. Zou et al., Systematic study of two-proton radioactivity within a Gamow-like model. Chin. Phys. C 45, 044110 (2021). https://doi.org/10.1088/1674-1137/abe10f H.M. Liu, Y.T. Zou, X. Pan et al., Systematic study of two-proton radioactivity half-lives based on a modified Gamow-like model. Int. J. Mod. Phys. E 30, 2150074 (2021). https://doi.org/10.1142/S0218301321500749 S. G. Nilsson Binding states of individual nucleons in strongly deformed nuclei, Dan. Mat .Fys. Medd 29, 16 (1955). cds.cern.ch/record/212345/files/p1.pdf B.A. Brown, Diproton decay of nuclei on the proton drip line. Phys. Rev. 43, R1513 (1991). https://doi.org/10.1103/PhysRevC.43.R1513 N. Anyas-Weiss, J.C. Cornell, P.S. Fisher et al., Nuclear structure of light nuclei using the selectivity of high energy transfer reactions with heavy ions. Phys. Rep. 12, 201 (1974). https://doi.org/10.1016/0370-1573(74)90045-3 J.P. Cui, Y.H. Gao, Y.Z. Wang et al., Two-proton radioactivity within a generalized liquid drop model. Phys. Rev. C 101, 014301 (2020). https://doi.org/10.1103/PhysRevC.101.014301 H.M. Liu, Y.T. Zou, X. Pan et al., New Geiger-Nuttall law for two-proton radioactivity. Chin. Phys. C 45, 024108 (2021). https://doi.org/10.1088/1674-1137/abd01e A. Kankainen, V.V. Elomaa, L. Batist et al., Systematics of cluster-radioactivity-decay constants as suggested by microscopic calculations. Phys. Rev. Lett. 61, 1930 (1988). https://doi.org/10.1103/PhysRevLett.61.1930 B. Durand, L. Durand, Duality for heavy-quark systems. Phys. Rev. D 23, 1092 (1981). https://doi.org/10.1103/PhysRevD.23.1092 R.L. Hall, Envelope representations for screened Coulomb potentials. Phys. Rev. A 32, 14 (1985). https://doi.org/10.1103/PhysRevA.32.14 R.L. Hall, R. Dutt, K. Chowdhury et al., An improved calculation for screened Coulomb potentials in Rayleigh-Schrodinger perturbation theory. J. Phys. A: Math. Gen. 18, 1379 (1985). https://doi.org/10.1088/0305-4470/18/9/020 J. Lindhard, P.G. Hansen, Atomic effects in low-energy beta decay: The case of tritium. Phys. Rev. Lett. 57, 965 (1986). https://doi.org/10.1103/PhysRevLett.57.965 P. Pyykkö, J. Jokisaari, Spectral density analysis of nuclear spin-spin coupling: I Hulth\(\rm \acute{e}\)n potential LCAO model for J\(\rm _{X-H}\) in hydride XH\(_4\). Chem. Phys. 10, 293 (1975). https://doi.org/10.1016/0301-0104(75)87043-1 J.J. Morehead, Asymptotics of radial wave equations. J. Math. Phys. 36, 5431 (1955). https://doi.org/10.1063/1.531270 F.Z. Xing, J.P. Cui, Y.Z. Wang et al., Two-proton radioactivity of ground and excited states within a unified fission model. Chin. Phys. C 45, 124105 (2021). https://doi.org/10.1088/1674-1137/ac2425 F.Z. Xing, J.P. Cui, Y.Z. Wang et al., Two-proton emission from excited states of proton-rich nuclei. Acta. Phys. Sin. 71, 062301 (2022). https://doi.org/10.7498/aps.71.20211839 X. Zhou, M. Wang, Y.H. Zhang et al., Charge resolution in the isochronous mass spectrometry and the mass of \(^{51}\)Co. Nucl. Sci. Tech. 32, 37 (2021). https://doi.org/10.1007/s41365-021-00876-0 Z.P. Gao, Y.J. Wang, H.L. Lü et al., Machine learning the nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). https://doi.org/10.1007/s41365-021-00956-1 X.C. Ming, H.F. Zhang, R.R. Xu et al., Nuclear mass based on the multi-task learning neural network method. Nucl. Sci. Tech. 33, 48 (2022). https://doi.org/10.1007/s41365-022-01031-z D. Benzaid, S. Bentridi, A. Kerraci et al., Bethe-Weizsäcker semiempirical mass formula coefficients 2019 update based on AME2016. Nucl. Sci. Tech. 31, 9 (2020). https://doi.org/10.1007/s41365-019-0718-8 H.L. Liu, D.D. Han, P. Ji et al., Reaction rate weighted multilayer nuclear reaction network. Chin. Phys. Lett. 37, 112601 (2020). https://doi.org/10.1088/0256-307X/37/11/112601 H.Y. Lu, C.H. Li, B.B. Chen, State classification via a random-walk-based quantum neural network. Chin. Phys. Lett. 39, 050301 (2022). https://doi.org/10.1088/0256-307X/39/5/050301 H.Y. Lu, C.H. Li, B.B. Chen et al., Network-initialized Monte Carlo based on generative neural networks. Chin. Phys. Lett. 39, 050701 (2022). https://doi.org/10.1088/0256-307X/39/5/050701 H.Y. Lu, C.H. Li, B.B. Chen et al., Neural network representations of quantum many-body states. Sci. China Phys. Mech. Astron. 63, 210312 (2020). https://doi.org/10.1007/s11433-018-9407-5 X.R. Ma, Z.C. Tu, S.J. Ran, Deep learning quantum states for Hamiltonian estimation. Chin. Phys. Lett. 38, 110301 (2021). https://doi.org/10.1088/0256-307X/38/11/110301 A. Kankainen, V.V. Elomaa, L. Batist et al., Mass measurements and implications for the energy of the high-spin isomer in \(^{94}\)Ag. Phys. Rev. Lett. 101, 142503 (2008). https://doi.org/10.1103/PhysRevLett.101.142503