Two-photon polarization microscopy reveals protein structure and function

Nature Methods - Tập 8 Số 8 - Trang 684-690 - 2011
Josef Lazar1, Alexey Bondar1, Štěpán Timr2, Stuart Firestein3
1Laboratory of Cell Biology, Institute of Nanobiology and Structural Biology, Global Change Research Centre, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
2Department of physics, Faculty of nuclear sciences and physical engineering, Czech Technical University in Prague, Prague, Czech Republic
3Department of Biological Sciences, Columbia University, New York, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Day, R.N. & Schaufele, F. Fluorescent protein tools for studying protein dynamics in living cells: a review. J. Biomed. Opt. 13, 031202 (2008).

Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

Piston, D.W. & Rizzo, M.A. FRET by fluorescence polarization microscopy. Methods Cell Biol. 85, 415–430 (2008).

Vrabioiu, A.M. & Mitchison, T.J. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469 (2006).

Lakowicz, J.R. Principles of Fluorescence Spectroscopy. 3rd edn. (Springer, New York, 2006).

Shi, X. et al. Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimers. Biochemistry 46, 14403–14417 (2007).

Callis, P.R. The theory of two-photon-induced fluorescence anisotropy. in Topics in Fluorescence Spectroscopy Vol. 5 (ed., Lakowicz, J.R.), 1–42 (Plenum Press, New York, 1997).

Chen, S.Y. & Van Der Meer, B.W. Theory of two-photon induced anisotropy decay in membranes. Biophys. J. 64, 1567–1575 (1993).

Volkmer, A., Subramaniam, V., Birch, D.J. & Jovin, T.M. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J. 78, 1589–1598 (2000).

Benninger, R.K., Onfelt, B., Neil, M.A., Davis, D.M. & French, P.M. Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. Biophys. J. 88, 609–622 (2005).

Axelrod, D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 26, 557–573 (1979).

Roorda, R.D., Hohl, T.M., Toledo-Crow, R. & Miesenbock, G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J. Neurophysiol. 92, 609–621 (2004).

Frank, M., Thumer, L., Lohse, M.J. & Bunemann, M. G Protein activation without subunit dissociation depends on a G{alpha}(i)-specific region. J. Biol. Chem. 280, 24584–24590 (2005).

Azpiazu, I. & Gautam, N. A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell. J. Biol. Chem. 279, 27709–27718 (2004).

Hein, P., Frank, M., Hoffmann, C., Lohse, M.J. & Bunemann, M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 24, 4106–4114 (2005).

Bunemann, M., Frank, M. & Lohse, M.J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. USA 100, 16077–16082 (2003).

Gibson, S.K. & Gilman, A.G. Giα and Gα subunits both define selectivity of G protein activation by α2-adrenergic receptors. Proc. Natl. Acad. Sci. USA 103, 212–217 (2006).

Leaney, J.L., Benians, A., Graves, F.M. & Tinker, A. A novel strategy to engineer functional fluorescent inhibitory G-protein alpha subunits. J. Biol. Chem. 277, 28803–28809 (2002).

Foerster, K. et al. Cardioprotection specific for the G protein Gi2 in chronic adrenergic signaling through β2-adrenoceptors. Proc. Natl. Acad. Sci. USA 100, 14475–14480 (2003).

Digby, G.J., Lober, R.M., Sethi, P.R. & Lambert, N.A. Some G protein heterotrimers physically dissociate in living cells. Proc. Natl. Acad. Sci. USA 103, 17789–17794 (2006).

Kroll, S.D. et al. The Q205LGo-alpha subunit expressed in NIH-3T3 cells induces transformation. J. Biol. Chem. 267, 23183–23188 (1992).

Hendel, T. et al. Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J. Neurosci. 28, 7399–7411 (2008).

Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5, 805–811 (2008).

Palmer, A.E. et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13, 521–530 (2006).

Cardona, A., Hartenstein, V. & Romero, R. Early embryogenesis of planaria: a cryptic larva feeding on maternal resources. Dev. Genes Evol. 216, 667–681 (2006).

Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).