Two paradigms in mathematical population biology: An attempt at synthesis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akçkaya, R.H., Burgman, M.A., and Ginzburg, L.R., Applied Population Ecology: Principles and Computer Exercises using RAMAS EcoLab 2.0, 2nd ed., Sunderland, MA: Sinauer, 1999.
Begon, M., Harper, J.L., and Townsend, C.R., Ecology. Individuals, Populations and Communities. 3rd ed., Oxford: Blackwell Sci. Publ, 1996.
Bernardelli, H., Population Waves, J. Burma Res. Soc., 1941, vol. 31, pp. 1–18.
Brewster-Geisz, K.K. and Miller, T.J., Management of the Sandbar Shark, Carcharhinus plumbeus: Implications of a Stage-Based Model, Fish. Bull., 2000, vol. 98, pp. 236–249.
Caswell, H., Matrix Population Models: Construction, Analysis, and Interpretation, Sunderland, MA: Sinauer Associates, 1989.
Caswell, H., Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed., Sunderland, MA: Sinauer Associates, 2001.
Chistyakova, A.A., Betala pendula, in Diagnozy i klyuchi vozrastnykh sostoyanii lesnykh rastenii. Derev’ya i kustarniki: metodicheskie razrabotki dlya studentov biologicheskikh spetsial’nostei (Diagnoses and Keys to the Age of Forest Plants. Trees and Shrubs: Methodological Development for Students of Biological Disciplines), Moscow: Prometei, 1989, pp. 69–76.
Csetenyi, A.I. and Logofet, D.O., Leslie Model Revisited: Some Generalizations for Block Structures, Ecol. Model., 1989, vol. 48, pp. 277–290.
Cull, P. and Vogt, A., The Periodic Limits for the Leslie Model, Math. Biosci., 1974, vol. 21, pp. 39–54.
Cushing, J.M. and Yicang, Z., The Net Reproductive Value and Stability in Matrix Population Models, Natur. Res. Model., 1994, vol. 8, pp. 297–333.
Cushing, J.M., Henson, S.M., and Blackburn, C.C., Multiple Mixed-Type Attractors in Competition Models, J. Biol. Dynam., 2007, vol. 1, no. 4, pp. 347–362.
Cushing, J.M., Le Varge, S., Chitnis, N., and Henson, S.M., Some Discrete Competition Models and the Competitive Exclusion Principle, J. Diff. Equat. Applic., 2004, vol. 10, nos. 13–15, pp. 1139–1151.
Feigenbaum, M.J., Quantitative Universality for a Class of Nonlinear Transformations, J. Stat. Phys., 1978, vol. 19, no. 1, p. 25.
Feigenbaum, M.J., The Universal Metric Properties of Nonlinear Transformations, J. Stat. Phys., 1979, vol. 21, no. 6, p. 669.
Gantmakher, F.R., Teoriya matrits (The Theory of Matrices), Moscow: Nauka, 1967.
Geramita, J.M. and Pullman, N.J., An Introduction to the Application of Nonnegative Matrices to Biological Systems, Queen’s Papers in Pure and Applied Mathematics no. 68, Kingston, Ontario, Canada: Queen’s Univ., 1984.
Goel, N.S., Maitra, S.C., and Montroll, E.W., On the Volterra and Other Nonlinear Models of Interacting Populations, Rev. Modern Phys., 1971, vol. 43, pp. 231–276.
Goodman, L.A., The Analysis of Population Growth When the Birth and Death Rates Depend upon Several Factors, Biometrics, 1969, vol. 25, pp. 659–681.
Hansen, P.E., Leslie Matrix Models: a Mathematical Survey, in Papers on Mathematical Ecology, Csetenyi, A.I., Ed., Budapest: Karl Marx Univ. Economics, 1986, pp. 54–106.
Harary, F., Norman, R.Z., and Cartwright, D., Structural Models: an Introduction to the Theory of Directed Graphs, New York: John Wiley, 1965.
Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1990.
Impagliazzo, J., Deterministic Aspects of Mathematical Demography: An Investigation of Stable Population Theory Including an Analysis of the Population Statistics of Denmark. Biomathematics, Berlin: Springer, 1985, vol. 13.
Jørgensen, S.E. and Bendoricchio, G., Fundamentals of Ecological Modelling, 3rd ed., Amsterdam: Elsevier, 2001.
Jørgensen, S.E., Fundamentals of Ecological Modelling. Developments in Environmental Modelling, Amsterdam: Elsevier, 1986, vol. 9.
Jury, E.I., Inners and Stability of Dynamic Systems, New York: Wiley, 1974. Translated under the title Innory i ustoichivost’ dinamicheskikh system, Moscow: Nauka, 1979.
Klochkova, I.N., Generalization of the Theorem on the Reproductive Potential for Logofet Matrices, Vestn. Mosk. Univ., Ser. 1: Matem. Mekhan. 2004, no. 3, pp. 45–48.
Kon, R., Permanence of Discrete-Time Kolmogorov Systems for Two Species and Saturated Fixed Points, J. Math. Biol., 2004, vol. 48, pp. 57–81.
Korn, G. and Korn, T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Mathematical Handbook for Scientists and Engineers), Moscow: Nauka, 1973.
Law, R., A Model for the Dynamics of a Plant Population Containing Individuals Classified by Age and Size, Ecology, 1983, vol. 64, pp. 224–230.
Lefkovitch, L.P., The Study of Population Growth in Organisms Grouped by Stages, Biometrics, 1965, vol. 21, pp. 1–18.
Leslie, P.H., On the Use of Matrices in Certain Population Mathematics, Biometrika, 1945, vol. 33, pp. 183–212.
Leslie, P.H., Some Further Notes on the Use of Matrices in Population Mathematics, Biometrika, 1948, vol. 35, pp. 213–245.
Lewis, E.G., On the Generation and Growth of a Population, Sankhya. Indian J. Statistics, 1942, vol. 6, pp. 93–96.
Li, C.-K. and Schneider, H., Application of Perron-Frobenius Theory to Population Dynamics, J. Math. Biol., 2002, vol. 44, no. 5, pp. 450–462.
Li, T.-Y. and Yorke, J.A., Period Three Implies Chaos, Amer. Math. Monthly, 1975, vol. 82, pp. 982–985.
Lieffers, V.J., Macdonald, S.E., and Hogg, E.H., Ecology of and Control Strategies for Calamagrostis canadensis in Boreal Forest Sites, Can. J. For. Res., 1993, vol. 23, pp. 2070–2077.
Logofet, D.O. and Belova, I.N., Nonnegative Matrices as a Tool for Modeling Population Dynamics: Classical Models and Contemporary Expansions, Fundam. Prikl. Matem., 2007, vol. 13, no. 4, pp. 145–164.
Logofet, D.O. and Klochkova, I.N., Mathematics of the Lefkovich Model: Reproductive Potential and Asymptotic Cycles, Mat. Model., 2002, vol. 14, no. 10, pp. 116–126.
Logofet, D.O., Matrices and Graphs: Stability Problems in Mathematical Ecology, Boca Raton, FL: CRC Press, 1993.
Logofet, D.O., Convexity in Projection Matrices: Projection to a Calibration Problem, Ecol. Model., 2008, vol. 216, no. 2, pp. 217–228.
Logofet, D.O., On the Indecomposability and Imprimitivity of Non-Negative Matrices of a Block Structure, Dokl. Akad. Nauk, 1989, vol. 308, no. 1, pp. 46–49.
Logofet, D.O., Once Again about the Nonlinear Leslie Model: Asymptotic Behavior of a Trajectory, Dokl. Akad. Nauk, 1991a, vol. 318, no. 5, pp. 1077–1081.
Logofet, D.O., Paths and Cycles in the Digraph as Tools for Characterization of Certain Classes of Matrices, Dokl. Akad. Nauk, 1999, vol. 367, no. 3, pp. 295–298.
Logofet, D.O., Svirezhev’s Principle of Substitution and Matrix Models of the Dynamics of Populations with a Complex Structure, Zh. Obshch. Biol., 2010, vol. 71, no. 1, pp. 30–40.
Logofet, D.O., The Theory of Matrix Models of Population Dynamics with Age and Additional Structures, Zh. Obshch. Biol., 1991b, vol. 52, no. 6, pp. 793–804.
Logofet, D.O., Three Sources and Three Component Parts of the Formalism of a Population with Discrete Stage and Age Structures, Mat. Model., 2002, vol. 14, no. 12, pp. 11–22.
Logofet, D.O., Ulanova, N.G., Klochkova, I.N., and Demidova, A.N., Structure and Dynamics of a Clonal Plant Population: Classical Model Results in a Non-Classic Formulation, Ecol. Modell., 2006, vol. 192, pp. 95–106.
May, R.M., Stability and Complexity in Model Ecosystems, Princeton: N.J.: Princeton Univ. Press, 1973.
May, R.M., Biological Populations Obeying Difference Equations: Stable Points, Stable Cycles and Chaos, J. Theor. Biol., 1975, vol. 51, no. 2, pp. 511–524.
Maybee, J.S., Olesky, D.D., Van Den Driessche, P., and Wiener, G., Matrices, Digraphs, and Determinants, SIAM J. Matrix Anal. Appl., 1989, vol. 10, pp. 500–519.
Mirkin, B.M. and Naumova, L.G., Nauka o rastitel’nosti: istoriya i sovremennoe sostoyanie osnovnykh kontseptsii (The Science about Vegetation: The History and Current State of the Main Concepts), Ufa: Gilem, 1998.
Mokrova, O.V., The Nonlinear Model of Competition between Two Populations with a Structure: The Search for Balance, Diploma Work, Moscow: Moscow State University, 2010.
Nedorezov, L.V., Sadykov, A.M., and Sadykova, D.L., The Dynamics of Abundance of the Green Oak Leaf Roller: The Use of Discrete-Continuous Models with Density-Dependent Nonmonotonic Birth Rate, Zh. Obshch. Biol., 2010, vol. 71, no. 1, pp. 41–51.
Pyšek, P., Pattern of Species Dominance and Factors Affecting Community Composition in Areas Deforested Due to Air Pollution, Vegetatio, 1994, vol. 112, pp. 45–56.
Rabotnov, T.A., About Coenotical Populations of Plant Species Belonging to the Plant Communities Which Succeed Each Other in Successions, Bot. Zh., 1995, vol. 80, no. 7, pp. 67–72.
Rebele, F. and Lehmann, C., Biological Flora of Central Europe: Calamagrostis epigejos (L.) Roth., Flora, 2001, vol. 196, pp. 325–344.
Salguero-Gómez, R. and Casper, B.B., Keeping Plant Shrinkage in the Demographic Loop, J. Ecol., 2010, vol. 98, no. 2, pp. 312–323.
Seneta, E., Non-Negative Matrices and Markov Chains, 2nd ed., New York: Springer-Verlag, 1981, Chap. 3.
Shapiro, A.P. and Luppov, S.P., Rekurrentnye uravneniya v teorii populyatsionnoi biologii (Recurrence Equations in the Theory of Population Biology), Moscow: Nauka, 1983.
Sharkovskii, A.N., Coexistence of Cycles with a Continuous Mapping of a Straight Line in Itself, Ukr. Matem. Zh., 1964, vol. 16, pp. 61–71.
Smirnova, O.V., Bobrovskii, M.V., and Khanina, L.G., Assessment and Prediction of Successional Processes in Forest Cenoses on the Basis of Demographic Methods, Byul. MOIP. Otd. Biol., 2001, vol. 106, no. 5, pp. 25–33.
Smirnova, O.V., Chistyakova, A.A., Zaugolnova, L.B., Evstigneev, O.I., Popadiouk, R.V., and Romanovsky, A.M., Ontogeny of Tree, Bot. Zh., 1999, vol. 84, no. 12, pp. 8–20.
Svirezhev, Yu.M. and Logofet, D.O., Ustoichivost’ biologicheskikh soobshchestv (Stability of Biological Communities), Moscow: Nauka, 1978.
Svirezhev, Yu.M., Vito Volterra and Modern Mathematical Ecology, in Vol’terra V. Matematicheskaya teoriya bor’by za sushchestvovanie (V. Volterra. Mathematical Theory of the Struggle for Existence), Moscow: Nauka, 1976, pp. 245–286.
Takada, T. and Hara, T., The Relationship between the Transition Matrix Model and the Diffusion Model, J. Math. Biol., 1994, vol. 32, pp. 789–807.
Ulanova, N.G., Calamagrostis epigeios, in Biologicheskaya flora Moskovskoi oblasti (Biological Flora of Moscow Region), Moscow: Izd. Mosk. Univ. and “Argus”, 1995, vol. 10, pp. 4–19.
Ulanova, N.G., Belova, I.N., and Logofet, D.O., Competition among Populations with Discrete Structure: The Dynamics of Populations of Reed and Birch Growing Together, Zh. Obshch. Biol., 2008, vol. 69, no. 6, pp. 478–494.
Ulanova, N.G., Demidova, A.N., Logofet, D.O., and Klochkova, I.N., Structure and Dynamics of Calamagrostis canescens Coenopopulation: A Model Approach, Zh. Obshch. Biol., 2002, vol. 63, no. 6, pp. 509–521.
Ulanova, N.G., Plant Age Stages during Succession in Woodland Clearing in Central Russia, in Vegetation Science in Retrospect and Perspective, White, P.S., Mucina, L., Leps, J., and Maarel Van Der, E., Eds., Uppsala: Opulus, 2000, pp. 80–83.
Ulanova, N.G., Zhukovskaya, O.V., Kuksina, N.V., and Demidova, A.N., Structure and Dynamics of Populations of White Birch (Betula pendula Roth.) in Calamagrostis epigeios Phytocenoses of Clear Cuttings of Spruce Forests of Kostroma Region, Byul. MOIP. Otd. Biol., 2005, vol. 110, no. 5, pp. 27–35.
Usher, M.B., Developments in the Leslie Matrix Models, in Mathematical Models in Ecology, Jeffre, J.N.R., Ed., Oxford: Blackwell, 1972, pp. 29–60.
Vasilevich, V.I., Ocherki teoreticheskoi fitotsenologii (Essays in Theoretical Phytocenology), Leningrad: Nauka, 1983.
Voevodin, V.V. and Kuznetsov, Yu.A., Matritsy i vychisleniya (Matrices and Computation), Moscow: Nauka, 1984.
Volterra, V., Lecons sur la Theorie Mathematique de la Lutte pour la Vie, Paris: Gauthier-Villars, 1931.
Werner, P.A. and Caswell, H., Population Growth Rates and Age Versus Stage-Distribution Models for Teasel (Dipsacus sylvestris Huds.), Ecology, 1977, vol. 58, pp. 1103–1111.
Wikan, A., From Chaos to Chaos. An Analysis of a Discrete Age-Structured Prey-Predator Model, J. Math. Biol., 2001, vol. 43, pp. 471–500.
Yakobson, M.V., The Properties of One-Parameter Family of Dynamical Systems x → Ax*exp(-x), Ukr. Matem. Zh., 1976, vol. 31, no. 2, pp. 239–240.
Zhdanova, O.L. and Frisman, E.Ya., Nonlinear Dynamics of Population Abundance: The Effect of Complexitwy of the Age Structure on the Scenario of Transition to Chaos, Zh. Obshch. Biol., 2011, vol. 72, no. 3, pp. 214–228.