Two new ɑ-pyrone derivatives from the endophytic Diaporthe sp. ECN371

Journal of Natural Medicines - Tập 76 - Trang 462-467 - 2022
Ken-ichi Nakashima1, Yuka Higuchi1, Junko Tomida2, Yoshiaki Kawamura2, Makoto Inoue1
1Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
2Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan

Tóm tắt

Diaportholides A (1) and B (2), two polyketides with ɑ-pyrone moieties, were isolated from the cultures of an endophytic Diaporthe sp. ECN371 isolated from Orixa japonica, together with four known polyketides, phomopsolide B (3), phomopsolidones A (4) and B (5), and 5-[(1R)-1-hydroxyethyl]-γ-oxo-2-furanbutanoic acid (6). The structures of 1 and 2 were determined by extensive analysis of NMR and MS spectroscopic data. Furthermore, the structure of 2 was confirmed by analyzing the single-crystal X-ray diffraction data. The luciferase reporter gene assay revealed that among all isolated compounds (1–6), 3, a known ɑ-pyrone derivative, exhibited agonistic activity against the peroxisome proliferator-activated receptor ɑ, which is an important regulator of lipid metabolism in humans.

Tài liệu tham khảo

Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1–41. https://doi.org/10.3767/003158513X666844 Nagarajan K, Tong WY, Leong CR, Tan WN (2021) Potential of endophytic Diaporthe sp as a new source of bioactive compounds. J Microbiol Biotechnol 31:493–500. https://doi.org/10.4014/jmb.2005.05012 Xu TC, Lu YH, Wang JF, Song ZQ, Hou YG, Liu SS, Liu CS, Wu SH (2021) Bioactive secondary metabolites of the genus Diaporthe and anamorph Phomopsis from terrestrial and marine habitats and endophytes: 2010–2019. Microorganisms 9:217. https://doi.org/10.3390/microorganisms9020217 Pu H, Liu J, Wang Y, Peng Y, Zheng W, Tang Y, Hui B, Nie C, Huang X, Duan Y, Huang Y (2021) Bioactive α-pyrone derivatives from the endophytic fungus Diaporthe sp. CB10100 as inducible nitric oxide synthase inhibitors. Front Chem 9:679592. https://doi.org/10.3389/fchem.2021.679592 Nakashima K, Tomida J, Kamiya T, Hirai T, Morita Y, Hara H, Kawamura Y, Adachi T, Inoue M (2018) Diaporthols A and B: bioactive diphenyl ether derivatives from an endophytic fungus Diaporthe sp. Tetrahedron Lett 59:1212–1215. https://doi.org/10.1016/j.tetlet.2018.02.032 Nakashima K, Tomida J, Hirai T, Kawamura Y, Inoue M (2019) Sesquiterpenes with new carbon skeletons from the basidiomycete Phlebia tremellosa. J Nat Med 73:480–486. https://doi.org/10.1007/s11418-019-01286-8 Nakashima K, Tomida J, Hirai T, Kawamura Y, Inoue M (2019) Paraconiothins A-J: sesquiterpenoids from the endophytic fungus Paraconiothyrium brasiliense ECN258. J Nat Prod 82:3347–3356. https://doi.org/10.1021/acs.jnatprod.9b00638 Nakashima K, Tomida J, Tsuboi T, Kawamura Y, Inoue M (2020) Muyocopronones A and B: azaphilones from the endophytic fungus Muyocopron laterale. Beilstein J Org Chem 16:2100–2107. https://doi.org/10.3762/bjoc.16.177 Grove JF (1985) Metabolic products of Phomopsis oblonga. Part 2. Phomopsolide A and B, tiglic esters of two 6-substituted 5,6-dihydro-5-hydroxypyran-2-ones. J Chem Soc Perkin Trans 1:865–869. https://doi.org/10.1039/P19850000865 Goddard ML, Mottier N, Jeanneret-Gris J, Christen D, Tabacchi R, Abou-Mansour E (2014) Differential production of phytotoxins from Phomopsis sp from grapevine plants showing esca symptoms. J Agric Food Chem 62:8602–8607. https://doi.org/10.1021/jf501141g Dai J, Krohn K, Gehle D, Kock I, Flörke U, Aust HJ, Draeger S, Schulz B, Rheinheimer J (2005) New oblongolides isolated from the endophytic fungus Phomopsis sp from Melilotus dentata from the shores of the Baltic Sea. Eur J Org Chem 2005:4009–4016. https://doi.org/10.1002/ejoc.200500290 Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80:756–770. https://doi.org/10.1021/acs.jnatprod.6b01085 Qu Y, Kraus GA (2017) A flexible route to bioactive 6-alkyl-α-pyrones. Tetrahedron Lett 58:892–893. https://doi.org/10.1016/j.tetlet.2017.01.063 Wickel SM, Citron CA, Dickschat JS (2013) 2H-Pyran-2-ones from Trichoderma viride and Trichoderma asperellum. Eur J Org Chem 2013:2906–2913. https://doi.org/10.1002/ejoc.201300049 Evidente A, Maddau L, Spanu E, Franceschini A, Lazzaroni S, Motta A (2003) Diplopyrone, a new phytotoxic tetrahydropyranpyran-2-one produced by Diplodia mutila, a fungus pathogen of cork oak. J Nat Prod 66:313–315. https://doi.org/10.1021/np020367c Maity S, Kanikarapu S, Marumudi K, Kunwar AC, Yadav JS, Mohapatra DK (2017) Asymmetric total synthesis of the putative structure of diplopyrone. J Org Chem 82:4561–4568. https://doi.org/10.1021/acs.joc.7b00086 Fusè M, Mazzeo G, Longhi G, Abbate S, Masi M, Evidente A, Puzzarini C, Barone V (2019) Unbiased determination of absolute configurations by vis-à-vis comparison of experimental and simulated spectra: the challenging case of diplopyrone. J Phys Chem B 123:9230–9237. https://doi.org/10.1021/acs.jpcb.9b08375 Sarotti AM (2020) In silico reassignment of (+)-diplopyrone by NMR calculations: use of a DP4/J-DP4/DP4+/DIP tandem to revise both relative and absolute configuration. J Org Chem 85:11566–11570. https://doi.org/10.1021/acs.joc.0c01563 Fritzen AM, Lundsgaard AM, Kiens B (2020) Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nat Rev Endocrinol 16:683–696. https://doi.org/10.1038/s41574-020-0405-1 Aljahdali AZ, Foster KA, O’Doherty GA (2020) Synthesis and biological study of the phomopsolide and phomopsolidones natural products. Chem Commun 56:12885–12896. https://doi.org/10.1039/D0CC04069J Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62:720–733. https://doi.org/10.1016/j.jhep.2014.10.039 Nakashima K, Yamaguchi E, Noritake C, Mitsugi Y, Goto M, Hirai T, Abe N, Sakai E, Oyama M, Itoh A, Inoue M (2020) Discovery and SAR of natural-product-inspired RXR agonists with heterodimer selectivity to PPARδ-RXR. ACS Chem Biol 15:1526–1534. https://doi.org/10.1021/acschembio.0c00146