Two new ɑ-pyrone derivatives from the endophytic Diaporthe sp. ECN371
Tóm tắt
Diaportholides A (1) and B (2), two polyketides with ɑ-pyrone moieties, were isolated from the cultures of an endophytic Diaporthe sp. ECN371 isolated from Orixa japonica, together with four known polyketides, phomopsolide B (3), phomopsolidones A (4) and B (5), and 5-[(1R)-1-hydroxyethyl]-γ-oxo-2-furanbutanoic acid (6). The structures of 1 and 2 were determined by extensive analysis of NMR and MS spectroscopic data. Furthermore, the structure of 2 was confirmed by analyzing the single-crystal X-ray diffraction data. The luciferase reporter gene assay revealed that among all isolated compounds (1–6), 3, a known ɑ-pyrone derivative, exhibited agonistic activity against the peroxisome proliferator-activated receptor ɑ, which is an important regulator of lipid metabolism in humans.
Tài liệu tham khảo
Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1–41. https://doi.org/10.3767/003158513X666844
Nagarajan K, Tong WY, Leong CR, Tan WN (2021) Potential of endophytic Diaporthe sp as a new source of bioactive compounds. J Microbiol Biotechnol 31:493–500. https://doi.org/10.4014/jmb.2005.05012
Xu TC, Lu YH, Wang JF, Song ZQ, Hou YG, Liu SS, Liu CS, Wu SH (2021) Bioactive secondary metabolites of the genus Diaporthe and anamorph Phomopsis from terrestrial and marine habitats and endophytes: 2010–2019. Microorganisms 9:217. https://doi.org/10.3390/microorganisms9020217
Pu H, Liu J, Wang Y, Peng Y, Zheng W, Tang Y, Hui B, Nie C, Huang X, Duan Y, Huang Y (2021) Bioactive α-pyrone derivatives from the endophytic fungus Diaporthe sp. CB10100 as inducible nitric oxide synthase inhibitors. Front Chem 9:679592. https://doi.org/10.3389/fchem.2021.679592
Nakashima K, Tomida J, Kamiya T, Hirai T, Morita Y, Hara H, Kawamura Y, Adachi T, Inoue M (2018) Diaporthols A and B: bioactive diphenyl ether derivatives from an endophytic fungus Diaporthe sp. Tetrahedron Lett 59:1212–1215. https://doi.org/10.1016/j.tetlet.2018.02.032
Nakashima K, Tomida J, Hirai T, Kawamura Y, Inoue M (2019) Sesquiterpenes with new carbon skeletons from the basidiomycete Phlebia tremellosa. J Nat Med 73:480–486. https://doi.org/10.1007/s11418-019-01286-8
Nakashima K, Tomida J, Hirai T, Kawamura Y, Inoue M (2019) Paraconiothins A-J: sesquiterpenoids from the endophytic fungus Paraconiothyrium brasiliense ECN258. J Nat Prod 82:3347–3356. https://doi.org/10.1021/acs.jnatprod.9b00638
Nakashima K, Tomida J, Tsuboi T, Kawamura Y, Inoue M (2020) Muyocopronones A and B: azaphilones from the endophytic fungus Muyocopron laterale. Beilstein J Org Chem 16:2100–2107. https://doi.org/10.3762/bjoc.16.177
Grove JF (1985) Metabolic products of Phomopsis oblonga. Part 2. Phomopsolide A and B, tiglic esters of two 6-substituted 5,6-dihydro-5-hydroxypyran-2-ones. J Chem Soc Perkin Trans 1:865–869. https://doi.org/10.1039/P19850000865
Goddard ML, Mottier N, Jeanneret-Gris J, Christen D, Tabacchi R, Abou-Mansour E (2014) Differential production of phytotoxins from Phomopsis sp from grapevine plants showing esca symptoms. J Agric Food Chem 62:8602–8607. https://doi.org/10.1021/jf501141g
Dai J, Krohn K, Gehle D, Kock I, Flörke U, Aust HJ, Draeger S, Schulz B, Rheinheimer J (2005) New oblongolides isolated from the endophytic fungus Phomopsis sp from Melilotus dentata from the shores of the Baltic Sea. Eur J Org Chem 2005:4009–4016. https://doi.org/10.1002/ejoc.200500290
Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80:756–770. https://doi.org/10.1021/acs.jnatprod.6b01085
Qu Y, Kraus GA (2017) A flexible route to bioactive 6-alkyl-α-pyrones. Tetrahedron Lett 58:892–893. https://doi.org/10.1016/j.tetlet.2017.01.063
Wickel SM, Citron CA, Dickschat JS (2013) 2H-Pyran-2-ones from Trichoderma viride and Trichoderma asperellum. Eur J Org Chem 2013:2906–2913. https://doi.org/10.1002/ejoc.201300049
Evidente A, Maddau L, Spanu E, Franceschini A, Lazzaroni S, Motta A (2003) Diplopyrone, a new phytotoxic tetrahydropyranpyran-2-one produced by Diplodia mutila, a fungus pathogen of cork oak. J Nat Prod 66:313–315. https://doi.org/10.1021/np020367c
Maity S, Kanikarapu S, Marumudi K, Kunwar AC, Yadav JS, Mohapatra DK (2017) Asymmetric total synthesis of the putative structure of diplopyrone. J Org Chem 82:4561–4568. https://doi.org/10.1021/acs.joc.7b00086
Fusè M, Mazzeo G, Longhi G, Abbate S, Masi M, Evidente A, Puzzarini C, Barone V (2019) Unbiased determination of absolute configurations by vis-à-vis comparison of experimental and simulated spectra: the challenging case of diplopyrone. J Phys Chem B 123:9230–9237. https://doi.org/10.1021/acs.jpcb.9b08375
Sarotti AM (2020) In silico reassignment of (+)-diplopyrone by NMR calculations: use of a DP4/J-DP4/DP4+/DIP tandem to revise both relative and absolute configuration. J Org Chem 85:11566–11570. https://doi.org/10.1021/acs.joc.0c01563
Fritzen AM, Lundsgaard AM, Kiens B (2020) Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nat Rev Endocrinol 16:683–696. https://doi.org/10.1038/s41574-020-0405-1
Aljahdali AZ, Foster KA, O’Doherty GA (2020) Synthesis and biological study of the phomopsolide and phomopsolidones natural products. Chem Commun 56:12885–12896. https://doi.org/10.1039/D0CC04069J
Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62:720–733. https://doi.org/10.1016/j.jhep.2014.10.039
Nakashima K, Yamaguchi E, Noritake C, Mitsugi Y, Goto M, Hirai T, Abe N, Sakai E, Oyama M, Itoh A, Inoue M (2020) Discovery and SAR of natural-product-inspired RXR agonists with heterodimer selectivity to PPARδ-RXR. ACS Chem Biol 15:1526–1534. https://doi.org/10.1021/acschembio.0c00146