Two-level Stabilized Finite Element Methods for the Steady Navier–Stokes Problem
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ait Ou Ammi, A., Marion, M.: Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier–Stokes equations. Numer. Math. 68, 189–213 (1994).
Babuska, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comp. 35, 1039–1062 (1980).
Boland, J., Nicolaides, R. A.: Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20, 722–731 (1983).
Bercovier, J., Pironneau, O.: Error estimates for finite element solution of the Stokes problem in the primitive variables. Numer. Math. 33, 211–224 (1979).
Bramble, J. H., Pasciak, J. E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comp. 50, 1–17 (1988).
Brezzi, F., Pitkäranta, J.: On the stabilisation of finite element approximations of the Stokes problems. Efficient solutions of elliptic systems (Hackbusch, W., ed.), pp. 11–19. Notes on Numerical Fluid Mechanics, vol. 10. Braunschweig: Vieweg 1984.
Douglas, Jr. J., Wang, J.: A absolutely stabilized finite element method for the Stokes problem. Math. Comp. 52, 495–508 (1989).
Ervin, V., Layton, W., Maubach, J.: A posteriori error estimators for a two-levelfinite element method for the Navier–Stokes equations. Numer. Meth. PDEs 12, 333–346 (1996).
Girault, V., Raviart, P. A.: Finite element method for Navier–Stokes equations: theory and algorithms. Berlin Heidelberg: Springer 1986.
Yinnian He.: A fully discrete stabilized finite-element method for the time-dependent Navier–Stokes problem. IMA J. Numer. Anal. 23, 665–691 (2003).
Yinnian He., Kaitai Li.: Convergence and stability of finite element nonlinear Galerkin method for the Navier–Stokes equations. Numer. Math. 79, 77–107 (1998).
Hughes, T. J. R., Franca, L. P.: A new finite element formulation for CFD: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comp. Meth. Appl. Mech. Engng. 65, 85–97 (1987).
Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982).
Kellogg, R. B., Osborn, J. E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 397–431 (1976).
Kay, D., Silvester, D.: A posteriori error estimation for stabilized mixed approximations of the Stokes equations. SIAM J. Sci. Comput. 21, 1321–1337 (2000).
Kechkar, N., Silvester, D.: Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comp. 58, 1–10 (1992).
Ladyzenskaja, O. A.: Mathematical questions of viscous non-compressible fluid dynamics. M. Nauka, 1970, pp. 288.
Layton, W.: A two level discretization method for the Navier–Stokes equations. Comput. Math. Appl. 26, 33–38 (1993).
Layton, W., Lenferink, W.: Two-level Picard, defect correction for the Navier–Stokes equations. Appl. Math. Comput. 80, 1–12 (1995).
Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier–Stokes equations. SIAM J. Numer. Anal. 35, 2035–2054 (1998).
Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32, 1170–1184 (1995).
Sani, R. L., Gresho, P. M., Lee, R. L., Griffiths, D. F.: The cause and cure(?) of the spurious pressures generated by certain finite element method solutions of the incompressible Navier–Stokes equations. Parts 1 and 2. Int. J. Numer. Meth. Fluids 1, 17–43; 171–204 (1981).
Silvester, D. J., Kechkar, N.: Stabilized bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem. Comp. Meth. Appl. Mech. Engng. 79, 71–87 (1990).
Stenberg, R.: Analysis of mixed finite elements for the Stokes problem: A unified approach. Math. Comp. 42, 9–23 (1984).
Temam, R.: Navier–Stokes equations, theory and numerical analysis. 3rd ed. Amsterdam: North-Holland 1983.
Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994).