Two-layer reflectometric interference spectroscopy-based immunosensing for C-reactive protein

Microchimica Acta - Tập 182 - Trang 307-313 - 2014
Akiko Murata1, Tooru Ooya1, Toshifumi Takeuchi1
1Graduate School of Engineering, Kobe University, Kobe, Japan

Tóm tắt

We report on dual interference layers for use in reflectometric interference spectroscopy (RIfS)-based immunosensing. The layers consist of (a) an antibody-embedded organic/inorganic hybrid titanium dioxide (TiO2) layer (~60 nm thick) as a sensitive layer, and (b) a TiO2 layer (~110 nm thick) as an interference base layer placed on a silicone substrate by liquid phase deposition. A monoclonal antibody against C-reactive protein (anti-CRP) was co-embedded with poly(L-lysine) as an organic binder during deposition of the TiO2 layer. The optical properties of layer with the antibody were optimized to achieve high sensitivity. Atomic force microscopy images of the sensor surface showed it to consist of a mesoporous structure with nano-scale unevenness. The binding of CRP to the sensor chips was monitored by RIfS, and CRP was repeatedly detected by this biosensor with a detection limit of ~60 ng mL−1. We presume that this two-layer method has a wide scope in that various kinds of biochips can be constructed for use in label-free optical biosensing.

Tài liệu tham khảo

Chen H, Jiang C, Yu C, Zhang S, Liu B, Kong J (2009) Protein chips and nanomaterials for application in tumor marker immunoassays. Biosens Bioelectron 24(12):3399–3411. doi:10.1016/j.bios.2009.03.020 Shastry S (2013) Immunosensor techniques (Electrochemical, SPR and QCM) used in food safety. Int J Farming Allied Sci 2(3):59–65 Vaisocherová H, Mrkvová K, Piliarik M, Jinoch P, Šteinbachová M, Homola J (2007) Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosens Bioelectron 22(6):1020–1026. doi:10.1016/j.bios.2006.04.021 Gauglitz G, Proll G (2008) Strategies for Label-Free Optical Detection. In: Renneberg R, Lisdat F (eds) Biosensing for the 21st Century, vol 109. Advances in Biochemical Engineering/Biotechnology. Springer Berlin Heidelberg, pp 395–432. doi:10.1007/10_2007_076 Spitznagel TM, Clark DS (1993) Surface-density and orientation effects on immobilized antibodies and antibody fragments. Bio/Technology 11:825–829 Vijayendran RA, Leckband DE (2000) A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal Chem 73(3):471–480. doi:10.1021/ac000523p Murata A, Ooya T, Takeuchi T (2013) Simple immobilization of antibody in organic/inorganic hybrid thin films for immunosensing. Biosens Bioelectron 43:45–49. doi:10.1016/j.bios.2012.11.021 Deki S, Aoi Y, Hiroi O, Kajinami A (1996) Titanium (IV) oxide thin films prepared from aqueous solution. Chem Lett 1996:433–434. doi:10.1246/cl.1996.433 Deki S, Aoi Y, Okibe J, Yanagimoto H, Kajinami A, Mizuhata M (1997) Preparation and characterization of iron oxyhydroxide and iron oxide thin films by liquid-phase deposition. J Mater Chem 7(9):1769–1772. doi:10.1039/A700628D Nagayama H, Honda H, Kawahara H (1988) A New process for silica coating. J Electrochem Soc 135(8):2013–2016. doi:10.1149/1.2096198 Tatemichi M, Sakamoto M, Mizuhata M, Deki S, Takeuchi T (2007) Protein-templated organic/inorganic hybrid materials prepared by liquid-phase deposition. J Am Chem Soc 129(35):10906–10910. doi:10.1021/ja071890m Gauglitz G, Brecht A, Kraus G, Mahm W (1993) Chemical and biochemical sensors based on interferometry at thin (multi-) layers. Sensors Actuators B Chem 11(1–3):21–27. doi:10.1016/0925-4005(93)85234-2 Gauglitz G, Ingenhoff J (1991) Influence of thin superstrate films on evanescent waves in surface waveguides. Ber Bunsenges Phys Chem 95(11):1558–1563. doi:10.1002/bbpc.19910951148 Brecht A, Gauglitz G (1994) Optimized layer systems for immunosensors based on the rifs transducer. Fresen J Anal Chem 349(5):360–366. doi:10.1007/Bf00326600 Brecht A, Ingenhoff J, Gauglitz G (1992) Direct monitoring of antigen-antibody interactions by spectral interferometry. Sensor Actuat B Chem 6(1–3):96–100. doi:10.1016/0925-4005(92)80038-Y Brecht A, Piehler J, Lang G, Gauglitz G (1995) A direct optical immunosensor for atrazine detection. Anal Chim Acta 311(3):289–299. doi:10.1016/0003-2670(95)00120-O Choi HW, Sakata Y, Kurihara Y, Ooya T, Takeuchi T (2012) Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system. Anal Chim Acta 728:64–68. doi:10.1016/j.aca.2012.03.030 Choi HW, Takahashi H, Ooya T, Takeuchi T (2011) Label-free detection of glycoproteins using reflectometric interference spectroscopy-based sensing system with upright episcopic illumination. Anal Methods Uk 3(6):1366–1370. doi:10.1039/C0ay00762e Fujimura T, Takenaka K, Goto Y (2005) Silicon-based optical thin-film biosensor array for real-time measurements of biomolecular interaction. Jpn J Appl Phys 1 44(4B):2849–2853. doi:10.1143/Jjap.44.2849 Kurihara Y, Takama M, Masubuchi M, Ooya T, Takeuchi T (2013) Microfluidic reflectometric interference spectroscopy-based sensing for exploration of protein-protein interaction conditions. Biosens Bioelectron 40(1):247–251. doi:10.1016/j.bios.2012.07.032 Kurihara Y, Takama M, Sekiya T, Yoshihara Y, Ooya T, Takeuchi T (2012) Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy. Langmuir 28(38):13609–13615. doi:10.1021/La302221y Casa E, Kurosawa C, Kurosawa S, Aizawa H, Park JW, Suzuki H (2006) Immunosensor using surface plasmon resonance for C-reactive protein detection. Electrochemistry 74(2):153–155. Lehr J, Hobhouse GC, Fernandes FCB, Bueno PR, Davis JJ (2014) Label-free capacitive diagnostics: exploiting local redox probe state occupancy (vol 86, pg 2559, 2014). Anal Chem 86(7):3682–3682. doi:10.1021/Ac500788e Vestergaard M, Kerman K, Kim DK, Hiep HM, Tamiya E (2008) Detection of Alzheimer's tau protein using localised surface plasmon resonance-based immunochip. Talanta 74(4):1038–1042. doi:10.1016/j.talanta.2007.06.009 Kirchmer CJ (1988) Estimation of detection limits for environmental analytical procedures - a tutorial. Acs Sym Ser 361:78–93.