Two finite difference schemes for time fractional diffusion-wave equation

Numerical Algorithms - Tập 64 Số 4 - Trang 707-720 - 2013
Jianfei Huang1, Yifa Tang1, Luis Vázquez2, Jiayi Yang1
1LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
2Departamento de Matemática Aplicada, Facultad de Informática, Instituto de Matemática Interdisciplinar (IMI), Universidad Complutense de Madrid, Madrid, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal, O.P.: Response of a diffusion-wave system subjected to deterministic and stochastic fields. Z. Angew. Math. Mech. 83(4), 265–274 (2003)

Becker-Kern, P., Meerschaert, M.M., Scheffler, H.P.: Limit theorem for continuous-time random walks with two time scales. J. Appl. Prob. 41, 455–466 (2004)

Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier analysis method for the fractional diffusion equation describing sub-diffusion. J. Comput Phys. 227(2), 886–897 (2007)

Chen, C., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Math. Comput. 81, 345–366 (2012)

Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34(10), 2998–3007 (2010)

Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance. III, The diffusion limit. In: Mathematical Finance, Trends in Math, pp. 171–180. Birkhäuser, Basel (2001)

Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)

Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)

Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional differential equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46(E), 488–504 (2005)

Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160–176 (2009)

Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27(1), 20–31 (1990)

Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

Mainardi, F.: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals. Springer, Wien (1997)

Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Physica A 370, 114–118 (2006)

Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002)

Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivative, Theory and Applications. Gordon and Breach, New York (1993)

Sanz-Serna, J.M.: A numerical method for a partial integro-differential equations. SIAM J. Numer. Anal. 25(2), 319–327 (1988)

Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

Meerschaert, M.M., Zhang, Y., Baeumerc, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078–1086 (2010)

Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309–319 (1993)

Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49(6), 2302–2322 (2011)

Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 46(2), 1079–1095 (2008)

Zhuang, P., Liu, F., Anh, V., Turner, I.: Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process. IMA J. Appl. Math. 74(5), 645–667 (2009)