Two discreet subsets of CD8 T cells modulate PLP91–110 induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice

Journal of Autoimmunity - Tập 38 - Trang 344-353 - 2012
Ashutosh K. Mangalam1, David Luckey1, Shailendra Giri2, Michele Smart1, Larry R. Pease1, Moses Rodriguez1,3, Chella S. David1
1Department of Immunology, Mayo Clinic College of Medicine, 200, 1st Street SW, Rochester, MN 55905, USA
2Department of Experimental pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
3Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA

Tài liệu tham khảo

Libbey, 2010, Studies in the modulation of experimental autoimmune encephalomyelitis, J Neuroimmune Pharmacol, 5, 168, 10.1007/s11481-010-9215-x Sospedra, 2005, Immunology of multiple sclerosis, Annu Rev Immunol, 23, 683, 10.1146/annurev.immunol.23.021704.115707 Tsunoda, 1996, Two models for multiple sclerosis: experimental allergic encephalomyelitis and Theiler's murine encephalomyelitis virus, J Neuropathol Exp Neurol, 55, 673, 10.1097/00005072-199606000-00001 Luckey, 2011, Role of HLA class II genes in susceptibility and resistance to multiple sclerosis: studies using HLA transgenic mice, J Autoimmun, 37, 122, 10.1016/j.jaut.2011.05.001 Mangalam, 2004, Identification of T cell epitopes on human proteolipid protein and induction of experimental autoimmune encephalomyelitis in HLA class II-transgenic mice, EurJ Immunol, 34, 280, 10.1002/eji.200324597 Mangalam, 2008, HLA class II transgenic mice mimic human inflammatory diseases, Adv Immunol, 97, 65, 10.1016/S0065-2776(08)00002-3 Tsuchida, 1994, Autoreactive CD8+ T-cell responses to human myelin protein-derived peptides, Proc Natl Acad Sci U S A, 91, 10859, 10.1073/pnas.91.23.10859 Jurewicz, 1998, MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes, J Immunol, 160, 3056 Biddison, 1997, Chemokine and matrix metalloproteinase secretion by myelin proteolipid protein-specific CD8+ T cells: potential roles in inflammation, J Immunol, 158, 3046 Lucchinetti, 1997, The controversy surrounding the pathogenesis of the multiple sclerosis lesion, Proc Mayo Clin, 72, 665, 10.1016/S0025-6196(11)63576-3 Bugawan, 2000, High-resolution HLA class I typing in the CEPH families: analysis of linkage disequilibrium among HLA loci, Tissue Antigens, 56, 392, 10.1034/j.1399-0039.2000.560502.x Babbe, 2000, Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction, J Exp Med, 192, 393, 10.1084/jem.192.3.393 Gay, 1997, The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. identification and characterization of the primary demyelinating lesion, Brain, 120, 1461, 10.1093/brain/120.8.1461 Lassmann, 1998, Neuropathology in multiple sclerosis: new concepts, Mult Scler, 4, 93, 10.1177/135245859800400301 Shresta, 1998, How do cytotoxic lymphocytes kill their targets?, Curr Opin Immunol, 10, 581, 10.1016/S0952-7915(98)80227-6 Trapani, 2000, Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo, Curr Opin Immunol, 12, 323, 10.1016/S0952-7915(00)00094-7 Huseby, 2001, A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis, J Exp Med, 194, 669, 10.1084/jem.194.5.669 Sun, 2001, Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice, J Immunol, 166, 7579, 10.4049/jimmunol.166.12.7579 Aristimuno, 2010, IFNbeta-1a therapy for multiple sclerosis expands regulatory CD8+ T cells and decreases memory CD8+ subset: a longitudinal 1-year study, Clin Immunol, 134, 148, 10.1016/j.clim.2009.09.008 Aristimuno, 2008, Expansion of regulatory CD8+ T-lymphocytes and fall of activated CD8+ T-lymphocytes after i.v. methyl-prednisolone for multiple sclerosis relapse, J Neuroimmunol, 204, 131, 10.1016/j.jneuroim.2008.08.009 Fletcher, 2010, T cells in multiple sclerosis and experimental autoimmune encephalomyelitis, Clin Exp Immunol, 162, 1, 10.1111/j.1365-2249.2010.04143.x Tennakoon, 2006, Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis, J Immunol, 176, 7119, 10.4049/jimmunol.176.11.7119 Zozulya, 2008, The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation, Hum Immunol, 69, 797, 10.1016/j.humimm.2008.07.014 Jiang, 1995, Murine CD8+ T cells that specifically delete autologous CD4+ T cells expressing V beta 8 TCR: a role of the Qa-1 molecule, Immunity, 2, 185, 10.1016/S1074-7613(95)80079-4 Jiang, 1992, Role of CD8+ T cells in murine experimental allergic encephalomyelitis, Science New York NY, 256, 1213, 10.1126/science.256.5060.1213 Koller, 1990, Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells, Science New York NY, 248, 1227, 10.1126/science.2112266 Das, 2000, Complementation between specific HLA-DR and HLA-DQ genes in transgenic mice determines susceptibility to experimental autoimmune encephalomyelitis, Hum Immunol, 61, 279, 10.1016/S0198-8859(99)00135-4 Mangalam, 2008, HLA-DQ6 (DQB1*0601)-restricted T cells protect against experimental autoimmune encephalomyelitis in HLA-DR3.DQ6 double-transgenic mice by generating anti-inflammatory IFN-gamma, J Immunol, 180, 7747, 10.4049/jimmunol.180.11.7747 Pavelko, 2003, Interleukin-6 protects anterior horn neurons from lethal virus-induced injury, J Neurosci, 23, 481, 10.1523/JNEUROSCI.23-02-00481.2003 Inaba, 1992, Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor, J Exp Med, 176, 1693, 10.1084/jem.176.6.1693 Giri, 2004, 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase, J Neurosci, 24, 479, 10.1523/JNEUROSCI.4288-03.2004 Chen, 2009, Novel CD8+ Treg suppress EAE by TGF-beta- and IFN-gamma-dependent mechanisms, Eur J Immunol, 39, 3423, 10.1002/eji.200939441 Cortesini, 2001, CD8+CD28- T suppressor cells and the induction of antigen-specific, antigen-presenting cell-mediated suppression of Th reactivity, Immunol Rev, 182, 201, 10.1034/j.1600-065X.2001.1820116.x Cosmi, 2003, Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes, Blood, 102, 4107, 10.1182/blood-2003-04-1320 Najafian, 2003, Regulatory functions of CD8+CD28- T cells in an autoimmune disease model, J Clin Invest, 112, 1037, 10.1172/JCI17935 Rifa'i, 2004, Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis, J Exp Med, 200, 1123, 10.1084/jem.20040395 Rifa'i, 2008, CD8+CD122+ regulatory T cells recognize activated T cells via conventional MHC class I-alphabetaTCR interaction and become IL-10-producing active regulatory cells, Int Immol, 20, 937, 10.1093/intimm/dxn052 Goverman, 2005, The role of CD8(+) T cells in multiple sclerosis and its animal models, Curr Drug Targets, 4, 239, 10.2174/1568010053586264 Whitacre, 2004, Spotlight on CD8 T cells in MS, Blood, 103, 3999, 10.1182/blood-2004-03-1148 Koh, 1992, Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice, Science New York NY, 256, 1210, 10.1126/science.256.5060.1210 Abdul-Majid, 2003, Comparing the pathogenesis of experimental autoimmune encephalomyelitis in CD4-/- and CD8-/- DBA/1 mice defines qualitative roles of different T cell subsets, J Neuroimmunol, 141, 10, 10.1016/S0165-5728(03)00210-8 Dittel, 2008, CD4 T cells: balancing the coming and going of autoimmune-mediated inflammation in the CNS, Brain Behav Immun, 22, 421, 10.1016/j.bbi.2007.11.010 Goverman, 2011, Immune tolerance in multiple sclerosis, Immunol Rev, 241, 228, 10.1111/j.1600-065X.2011.01016.x Klebb, 1996, Interleukin-2 is indispensable for development of immunological self-tolerance, Clin Immunol Immunopathol, 81, 282, 10.1006/clin.1996.0190 Filaci, 2011, CD8(+) T regulatory/suppressor cells and their relationships with autoreactivity and autoimmunity, Autoimmunity, 44, 51, 10.3109/08916931003782171 Shi, 2009, Human CD8+CXCR3+ T cells have the same function as murine CD8+CD122+ Treg, Eur J Immunol, 39, 2106, 10.1002/eji.200939314 Shi, 2008, Importance of CD80/CD86-CD28 interactions in the recognition of target cells by CD8+CD122+ regulatory T cells, Immunology, 124, 121, 10.1111/j.1365-2567.2007.02747.x Endharti, 2005, Cutting edge: CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells, J Immunol, 175, 7093, 10.4049/jimmunol.175.11.7093 Willenborg, 1999, IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide, J Immunol, 163, 5278 Lee, 2008, Essential role of CD8+CD122+ regulatory T cells in the recovery from experimental autoimmune encephalomyelitis, J Immunol, 180, 825, 10.4049/jimmunol.180.2.825 Willenborg, 1996, IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis, J Immunol, 157, 3223 Zozulya, 2009, The level of B7 homologue 1 expression on brain DC is decisive for CD8 Treg cell recruitment into the CNS during EAE, Eur J Immunol, 39, 1536, 10.1002/eji.200839165