Two-dimensional silica opens new perspectives

Progress in Surface Science - Tập 92 Số 4 - Trang 341-374 - 2017
Christin Büchner1, Markus Heyde1
1Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shaikhutdinov, 2013, Ultrathin silica films on metals: the long and winding road to understanding the atomic structure, Adv. Mater., 25, 49, 10.1002/adma.201203426

Schroeder, 2000, EPITAXIAL GROWTH OF SiO 2 ON Mo(112), Surf. Rev. Lett., 7, 7, 10.1142/S0218625X00000038

Löffler, 2010, Growth and structure of crystalline silica sheet on, Phys. Rev.Lett., 105, 146104, 10.1103/PhysRevLett.105.146104

Lichtenstein, 2012, The atomic structure of a metal-supported vitreous thin silica film, Angew. Chemie, Int. Ed., 51, 404, 10.1002/anie.201107097

Michel, 2011, Quantitative analysis of culture using millions of digitized books, Science, 80, 176, 10.1126/science.1199644

Weiss, 1954, Über Siliciumchalkogenide. VI. Zur Kenntnis der faserigen Siliciumdioxyd-Modifikation, Zeitschrift Für Anorg. Und Allg, Chemie., 276, 95

Shaikhutdinov, 2015, Ultra-thin silicate films on metals, J. Phys. Condens. Matter., 27, 443001, 10.1088/0953-8984/27/44/443001

Özçelik, 2014, Stable Single-Layer Honeycomblike Structure of Silica, Phys. Rev. Lett., 112, 246803, 10.1103/PhysRevLett.112.246803

Gao, 2017, Novel Two-Dimensional Silicon Dioxide with in-Plane Negative Poisson’s Ratio, Nano Lett., 17, 772, 10.1021/acs.nanolett.6b03921

Wang, 2015, Novel Two-Dimensional Silica Monolayers with Tetrahedral and Octahedral Configurations, J. Phys. Chem. C, 119, 15654, 10.1021/acs.jpcc.5b01646

Yu, 2012, Support effects on the atomic structure of ultrathin silica films on metals, Appl. Phys. Lett., 100, 151608, 10.1063/1.3703609

Altman, 2013, Growth and Characterization of Crystalline Silica Films on Pd(100), J. Phys. Chem. C, 117, 26144, 10.1021/jp4101152

Jhang, 2017, Growth of two dimensional silica and aluminosilicate bilayers on Pd(111): from incommensurate to commensurate crystalline, Phys. Chem. Chem. Phys.

Hutchings, 2017, Epitaxial Ni x Pd 1– x (111) Alloy Substrates with Continuously Tunable Lattice Constants for 2D Materials Growth, ACS Appl. Mater. Interfaces., 9, 11266, 10.1021/acsami.7b01369

Ben Romdhane, 2013, In Situ Growth of Cellular Two-Dimensional Silicon Oxide on Metal Substrates, ACS Nano, 7, 5175, 10.1021/nn400905k

Huang, 2012, Direct Imaging of a Two-Dimensional Silica Glass on Graphene, Nano Lett., 12, 1081, 10.1021/nl204423x

Xu, 1992, New approach to the preparation of ultrathin silicon dioxide films at low temperatures, Appl. Phys. Lett., 61, 774, 10.1063/1.107795

He, 1992, X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo(100) surface, Surf. Sci., 279, 119, 10.1016/0039-6028(92)90748-U

Xu, 1993, The preparation and characterization of ultra-thin silicon dioxide films on a Mo(110) surface, Surf. Sci., 282, 323, 10.1016/0039-6028(93)90937-F

Weissenrieder, 2005, Atomic structure of a thin silica film on a Mo(112) substrate: a two-dimensional network of SiO4 tetrahedra, Phys. Rev. Lett., 95, 76103, 10.1103/PhysRevLett.95.076103

Yang, 2012, Thin silica films on Ru(0001): monolayer, bilayer and three-dimensional networks of [SiO4] tetrahedra, Phys. Chem. Chem. Phys., 14, 11344, 10.1039/c2cp41355h

Klemm, 2016, Preparation of silica films on Ru(0001): a LEEM/PEEM study, Surf. Sci., 643, 45, 10.1016/j.susc.2015.05.017

Altman, 2014, Structural and Electronic Heterogeneity of Two Dimensional Amorphous Silica Layers, Adv. Mater. Interfaces., 1, 1

Lichtenstein, 2012, Crystalline-Vitreous Interface in Two Dimensional Silica, Phys. Rev. Lett., 109, 1

Gao, 2016, Two-dimensional silica: structural, mechanical properties, and strain-induced band gap tuning, J. Appl. Phys., 119, 14301, 10.1063/1.4939279

Malashevich, 2016, Directing the Structure of Two-Dimensional Silica and Silicates, J. Phys. Chem. C, 120, 26770, 10.1021/acs.jpcc.6b07008

Lichtenstein, 2012

Ben Romdhane, 2014, Solid-State Growth of One- and Two-Dimensional Silica Structures on Metal Surfaces, J. Phys. Chem. C, 118, 21001, 10.1021/jp506114k

Pomp, 2016, Exploring Pd adsorption, diffusion, permeation, and nucleation on bilayer SiO2/Ru as a function of hydroxylation and precursor environment: from UHV to catalyst preparation, Surf. Sci., 652, 286, 10.1016/j.susc.2015.12.030

Włodarczyk, 2012, Tuning the electronic structure of ultrathin crystalline silica films on Ru(0001), Phys. Rev. B., 85, 85403, 10.1103/PhysRevB.85.085403

Swallen, 2007, Organic glasses with exceptional thermodynamic and kinetic stability, Science, 80, 353, 10.1126/science.1135795

Turnbull, 1981, Metastable structures in metallurgy, Metall. Trans. A, 12, 695, 10.1007/BF02648333

Zanotto, 1998, Do cathedral glasses flow?, Am. J. Phys., 66, 392, 10.1119/1.19026

Gutzow, 2013, The Vitreous State, Springer, Berlin Heidelberg, Berlin, Heidelberg

Ferrari, 2015, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale., 7, 4598, 10.1039/C4NR01600A

Büchner, 2016, A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer, ACS Nano, 10, 7982, 10.1021/acsnano.6b03929

Choi, 2009, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature, 461, 246, 10.1038/nature08288

Doyle, 2003, Ultra-thin zeolite films prepared by spin-coating Silicalite-1 precursor solutions, Chem. Phys. Lett., 382, 404, 10.1016/j.cplett.2003.10.088

Wang, 2017, Wet Chemical Synthesis of Silica Nanosheets via Ethyl Acetate-Mediated Hydrolysis of Silica Precursors and Their Applications, Small, 13, 1603369, 10.1002/smll.201603369

Braun, 2012, BaSi4O6N2 – a hexacelsian-type layered oxonitridosilicate, Eur. J. Inorg. Chem., 2012, 3923, 10.1002/ejic.201200186

Corma, 1998, Delaminated zeolite precursors as selective acidic catalysts, Nature, 396, 353, 10.1038/24592

Liebau, 1985, Structural Chemistry of Silicates, Springer, Berlin Heidelberg, Berlin, Heidelberg

Hwang, 2015, Topotactic and reconstructive changes at high pressures and temperatures from Cs-natrolite to Cs-hexacelsian, Am. Mineral., 100, 1562, 10.2138/am-2015-5090

Jałochowski, 2016, Spilling of electronic states in Pb quantum wells, Phys. Rev. B., 93, 35437, 10.1103/PhysRevB.93.035437

Højrup Hansen, 2001, Bias dependent apparent height of an Al2O3 thin film on NiAl(110), and of supported Pd clusters, Surf. Sci., 475, 96, 10.1016/S0039-6028(00)01077-3

Lichtenstein, 2012, Atomic arrangement in two-dimensional silica: from crystalline to vitreous structures, J. Phys. Chem. C, 116, 20426, 10.1021/jp3062866

Björkman, 2016, Vibrational properties of a two-dimensional silica Kagome Lattice, ACS Nano, 10.1021/acsnano.6b05577

Lichtenstein, 2012, Probing the properties of metal–oxide interfaces: silica films on Mo and Ru supports, J. Phys.: Condens. Matter, 24, 354010

C.S.S.R. Kumar, (Ed.), Surface Science Tools for Nanomaterials Characterization, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. doi:10.1007/978-3-662-44551-8.

Büchner, 2014, Adsorption of Au and Pd on Ruthenium-Supported Bilayer Silica, J. Phys. Chem. C, 118, 20959, 10.1021/jp5055342

Wang, 2016, Energy Level Shifts at the Silica/Ru(0001) Heterojunction Driven by Surface and Interface Dipoles, Top. Catal.

Schlexer, 2014, Adsorption of Li, Na, K, and Mg atoms on amorphous and crystalline silica bilayers on Ru(0001): a DFT Study, J. Phys. Chem. C, 118, 15884, 10.1021/jp504746c

Raberg, 1998, Atomically resolved AFM investigations of an amorphous barium silicate surface, Appl. Phys. A Mat. Sci. Process., 66, 1143, 10.1007/s003390051314

Raberg, 2005, Atomic scale imaging of amorphous silicate glass surfaces by scanning force microscopy, J. Non. Cryst. Solids., 351, 1089, 10.1016/j.jnoncrysol.2005.01.022

Büchner, 2014, Topological Investigation of Two-Dimensional Amorphous Materials, Zeitschrift Für Phys. Chemie., 228, 587, 10.1515/zpch-2014-0438

Pivetta, 2008, Two-Dimensional Tiling by Rubrene Molecules Self-Assembled in Supramolecular Pentagons, Hexagons, and Heptagons on a Au(111) Surface, Angew. Chemie Int. Ed., 47, 1076, 10.1002/anie.200704479

Weaire, 1984, Soap, cells and statistics—random patterns in two dimensions, Contemp. Phys., 25, 59, 10.1080/00107518408210979

Björkman, 2013, Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems, Sci. Rep., 3, 3482, 10.1038/srep03482

Huang, 2013, Imaging atomic rearrangements in two-dimensional silica glass: watching Silica’s Dance, Science, 80, 224, 10.1126/science.1242248

Burson, 2017, Assessing the amorphousness and periodicity of common domain boundaries in silica bilayers on Ru(0 0 0 1), J. Phys.: Condens. Matter, 29, 35002

Rosenhain, 1913, The Intercrystalline Cohesion of Metals, Inst. Met., 10, 119

Akinwande, 2016, A review on mechanics and mechanical properties of 2D materials – graphene and beyond, Extrem. Mech. Lett., 13, 1

Yang, 2013, Hydroxylation of Metal-Supported Sheet-Like Silica Films, J. Phys. Chem.C., 117, 8336, 10.1021/jp401935u

Wright, 2013, Eighty years of random networks, Phys. Status Solidi Basic Res., 250, 931, 10.1002/pssb.201248500

Sharma, 1981, Raman investigation of ring configurations in viterous silica, Nature, 292, 140, 10.1038/292140a0

Shackelford, 1978, The interstitial structure of vitreous silica, J. Non. Cryst. Solids., 30, 127, 10.1016/0022-3093(78)90061-3

Zachariasen, 1932, The Atomic Arrangement in Glass, J. Am. Chem. Soc., 54, 3841, 10.1021/ja01349a006

Shackelford, 1982, Triangle rafts — extended Zachariasen schematics for structure modeling, J. Non. Cryst. Solids., 49, 19, 10.1016/0022-3093(82)90106-5

Büchner, 2016, Building block analysis of 2D amorphous networks reveals medium range correlation, J. Non. Cryst. Solids., 435, 40, 10.1016/j.jnoncrysol.2015.12.020

Shackelford, 1981, The lognormal distribution in the random network structure, J. Non. Cryst. Solids., 44, 379, 10.1016/0022-3093(81)90040-5

Kumar, 2014, Ring statistics of silica bilayers, J. Phys.: Condens. Matter, 26, 395401

Chiu, 1995, Aboav-Weaire’s and Lewis’ Laws – a review, Mater. Charact., 34, 149, 10.1016/1044-5803(94)00081-U

Lewis, 1931, A comparison between the mosaic of polygons in a film of artificial emulsion and the pattern of simple ephithelium in surface view (cucumber epidermis and human amnion), Anat. Rec., 50, 235, 10.1002/ar.1090500303

Sadjadi, 2016, Ring correlations in random networks, Phys. Rev. E., 94, 62304, 10.1103/PhysRevE.94.062304

C. Büchner, L. Lichtenstein, M. Heyde, H.-J. Freund, The atomic structure of two-dimensional silica, in: Noncontact At. Force Microsc., vol. 3, 2015: pp. 327–353. doi:10.1007/978-3-319-15588-3_16.

Takayanagi, 1985, Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 3, 1502, 10.1116/1.573160

Li, 2013, Symmetry breaking and low energy conformational fluctuations in amorphous graphene, Phys. Status Solidi B Basic Solid State Phys., 250, 1012, 10.1002/pssb.201248481

Yang, 2011, Identification of 5–7 defects in a copper oxide surface, J. Am. Chem. Soc., 133, 11474, 10.1021/ja204652v

Blunt, 2010, Templating molecular adsorption using a covalent organic framework, Chem. Commun. (Cambridge, United Kingdom), 46, 7157, 10.1039/c0cc01810d

Boscoboinik, 2013, Building blocks of zeolites on an aluminosilicate ultra-thin film, Microporous Mesoporous Mater., 165, 158, 10.1016/j.micromeso.2012.08.014

Maier, 2016, Growth and Structure of the First Layers of Ice on Ru(0001) and Pt(111), J. Am. Chem. Soc., 138, 3145, 10.1021/jacs.5b13133

Shechtman, 1984, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Phys. Rev. Lett., 53, 1951, 10.1103/PhysRevLett.53.1951

Hargittai, 2015, Science of Crystal Structures, Springer International Publishing, Cham

Förster, 2013, Quasicrystalline structure formation in a classical crystalline thin-film system, Nature, 502, 215, 10.1038/nature12514

Urgel, 2016, Quasicrystallinity expressed in two-dimensional coordination networks, Nat. Chem., 8, 657, 10.1038/nchem.2507

Burson, 2015, Characterizing crystalline-vitreous structures: from atomically resolved silica to macroscopic bubble rafts, J. Chem. Educ., 92, 1896, 10.1021/acs.jchemed.5b00056

Stuckenholz, 2015, MgO on Mo(001): local work function measurements above pristine terrace and line defect sites, J. Phys. Chem. C, 119, 12283, 10.1021/jp512575n

Feynman, 1960, There’s plenty of room at the bottom, Eng. Sci., 23, 22

Wang, 2015, Mechanistic transition of heat conduction in two-dimensional solids: a study of silica bilayers, Phys. Rev. B., 92, 245427, 10.1103/PhysRevB.92.245427

Xu, 2016, Heat transport in low-dimensional materials: a review and perspective, Theor. Appl. Mech. Lett., 6, 113, 10.1016/j.taml.2016.04.002

Abrahams, 1979, Scaling Theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett., 42, 673, 10.1103/PhysRevLett.42.673

Zhang, 2017, Phase transformation in two-dimensional crystalline silica under compressive loading, Phys. Chem. Chem. Phys., 19, 8478, 10.1039/C7CP00273D

Wiesendanger, 1987, Application of Scanning Tunneling Microscopy to Disordered Systems, Surf. Sci., 181, 46, 10.1016/0039-6028(87)90140-3

Bürgler, 1999, Atomic-scale scanning tunneling microscopy of amorphous surfaces, Phys. Rev. B Condens. Matter Mater. Phys., 59, 895, 10.1103/PhysRevB.59.10895

Poggemann, 2001, Direct view of the structure of a silica glass fracture surface, J. Non. Cryst. Solids., 281, 221, 10.1016/S0022-3093(00)00421-X

Büchner, 2012, Ein glasklares Modell, Nachrichten Aus Der Chemie., 60, 861, 10.1002/nadc.201290303

Schaub, 1996, Investigation of non-crystalline surfaces by scanning tunneling microscopy, J. Non. Cryst. Solids., 205–207, 748, 10.1016/S0022-3093(96)00301-8

Kumar, 2010, Atomically smooth surfaces through thermoplastic forming of metallic glass, Appl. Phys. Lett., 97, 101907, 10.1063/1.3485298

S. Morita, R. Wiesendanger, E. Meyer, (Eds.), Noncontact Atomic Force Microscopy, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. doi:10.1007/978-3-642-56019-4.

Heyde, 2006, Probing adsorption sites on thin oxide films by dynamic force microscopy, Appl. Phys. Lett., 89, 263107, 10.1063/1.2424432

Lichtenstein, 2012, Enhanced atomic corrugation in dynamic force microscopy—The role of repulsive forces, Appl. Phys. Lett., 100, 123105, 10.1063/1.3696039

Burson, 2016, Resolving amorphous solid-liquid interfaces by atomic force microscopy, Appl. Phys. Lett., 108, 201602, 10.1063/1.4949556

Boscoboinik, 2012, Modeling Zeolites with Metal-Supported Two-Dimensional Aluminosilicate Films, Angew. Chemie Int. Ed., 51, 6005, 10.1002/anie.201201319

Włodarczyk, 2013, Atomic Structure of an Ultrathin Fe-Silicate Film Grown on a Metal: a Monolayer of Clay?, J. Am. Chem. Soc., 135, 19222, 10.1021/ja408772p

Fischer, 2015, Ultrathin Ti-Silicate Film on a Ru(0001) Surface, J. Phys. Chem. C, 119, 15443, 10.1021/acs.jpcc.5b04291

Ulrich, 2009, Realization of an atomic sieve: silica on Mo(112), Surf. Sci., 603, 1145, 10.1016/j.susc.2009.02.030

Price, 2000, Modified silicas for clean technology, J. Chem. Soc. Dalt. Trans., 101, 10.1039/a905457j

Jal, 2004, Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions, Talanta, 62, 1005, 10.1016/j.talanta.2003.10.028

Biscoe, 1941, X-ray study of soda-lime-silica glass, J. Am. Ceram. Soc., 24, 262, 10.1111/j.1151-2916.1941.tb14859.x

H.A. Schaeffer, R. Langfeld, Werkstoff Glas, first ed. 2014 Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37231-5.

Loewenstein, 1954, The distribution of aluminum in the tetrahedra of silicates and aluminateS, Am. Mineral., 39, 92

Li, 2017, Transition Metal Induced Crystallization of Ultrathin Silica Films, Chem. Mater., 29, 931, 10.1021/acs.chemmater.6b05213

Tissot, 2016, Preparation and structure of Fe-containing aluminosilicate thin films, Phys. Chem. Chem. Phys., 18, 25027, 10.1039/C6CP03460H

Wendt, 2004, The interaction of water with silica thin films grown on Mo(112), Surf. Sci., 565, 107, 10.1016/j.susc.2004.06.213

Kaya, 2007, Formation of an Ordered Ice Layer on a Thin Silica Film, J. Phys. Chem. C, 111, 759, 10.1021/jp064283e

Yu, 2016, Electron stimulated hydroxylation of a metal supported silicate film, Phys. Chem. Chem. Phys., 18, 3755, 10.1039/C5CP06852E

Kaden, 2016, Insights into Silica Bilayer Hydroxylation and Dissolution, Top. Catal.

Groppo, 2005, a Zecchina, The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods, Chem. Rev., 105, 115, 10.1021/cr040083s

D. Jeremic, Polyethylene, in: Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014: pp. 1–42. doi:10.1002/14356007.a21_487.pub3.

Ulrich, 2009, Modifying the Adsorption Characteristic of Inert Silica Films by Inserting Anchoring Sites, Phys. Rev. Lett., 102, 110, 10.1103/PhysRevLett.102.016102

Scholze, 1988, Glas, Springer, Berlin Heidelberg, Berlin, Heidelberg

Zhong, 2016, Oxidation and reduction under cover: chemistry at the confined space between ultrathin nanoporous silicates and Ru(0001), J. Phys. Chem. C, 120, 8240, 10.1021/acs.jpcc.6b02851

Emmez, 2016, Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films, Surf. Sci., 646, 19, 10.1016/j.susc.2015.06.019

Emmez, 2014, Permeation of a Single-Layer SiO2 Membrane and Chemistry in Confined Space, J. Phys. Chem. C, 118, 29034, 10.1021/jp503253a

Boscoboinik, 2013, Interaction of probe molecules with bridging hydroxyls of two-dimensional zeolites: a surface science approach, J. Phys. Chem. C, 117, 13547, 10.1021/jp405533s

McKenzie, 2017, Adhesion of organic molecules on silica surfaces: a Density Functional Theory Study, J. Phys. Chem. C, 121, 392, 10.1021/acs.jpcc.6b10394

R. Poli, (Ed.), Effects of Nanoconfinement on Catalysis, Springer International Publishing, Cham, 2017. doi:10.1007/978-3-319-50207-6.

Ferrighi, 2016, Catalysis under cover: enhanced reactivity at the interface between (Doped) graphene and anatase TiO2, J. Am. Chem. Soc., 138, 7365, 10.1021/jacs.6b02990

Schlexer, 2016, CO adsorption on a silica bilayer supported on Ru(0001), Surf. Sci., 648, 2, 10.1016/j.susc.2015.10.027

Muller, 1999, The electronic structure at the atomic scale of ultrathin gate oxides, Nature, 399, 758, 10.1038/21602

Stacchiola, 2008, Growth of stoichiometric subnanometer silica films, Appl. Phys. Lett., 92, 11911, 10.1063/1.2824842

Y.J. Chabal, Fundamental Aspects of Silicon Oxidation, first ed., 2001, Springer-Verlag Berlin, Heidelberg. doi: 10.1007/978-3-642-56711-7.

Rudenko, 2011, Interfacial interactions between local defects in amorphous SiO2 and supported graphene, Phys. Rev. B., 84, 1, 10.1103/PhysRevB.84.085438

Larciprete, 2015, Chemical gating of epitaxial graphene through ultrathin oxide layers, Nanoscale., 7, 12650, 10.1039/C5NR02936H

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 80, 666, 10.1126/science.1102896

Tongay, 2012, Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2, Nano Lett., 12, 5576, 10.1021/nl302584w

Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805

Liang, 2014, Electronic Bandgap and Edge Reconstruction in Phosphorene Materials, Nano Lett., 14, 6400, 10.1021/nl502892t

Song, 2010, Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers, Nano Lett., 10, 3209, 10.1021/nl1022139