Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires
Tài liệu tham khảo
Cui, 2001, Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science, 291, 851, 10.1126/science.291.5505.851
Hayden, 2005, Core–shell nanowire light-emitting diodes, Adv. Mater., 17, 701, 10.1002/adma.200401235
Wu, 2012, Photoelectrochemical responses of silicon nanowire arrays for light detection, Chem. Phys. Lett., 538, 102, 10.1016/j.cplett.2012.04.046
Peng, 2013, Silicon nanowires for advanced energy conversion and storage, Nano Today, 8, 75, 10.1016/j.nantod.2012.12.009
Yang, 2015, Entropy change-induced elastic softening of lithiated materials, Theor. Appl. Mech. Lett., 5, 255, 10.1016/j.taml.2015.09.003
Marcus, 1982, The oxidation of shaped silicon surfaces, J. Electrochem. Soc., 129, 1278, 10.1149/1.2124118
Zhao, 2004, Quantum confinement and electronic properties of silicon nanowires, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.236805
Ma, 2010, Modeling of stress-retarded thermal oxidation of nonplanar silicon structures for realization of nanoscale devices, IEEE Electron Device Lett., 31, 719, 10.1109/LED.2010.2047375
Han, 2015, Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma, Appl. Phys. Lett., 106
Han, 2013, Modelling and engineering of stress based controlled oxidation effects for silicon nanostructure patterning, Nanotechnology, 24, 10.1088/0957-4484/24/49/495301
Fan, 2013, Two-dimensional self-limiting wet oxidation of silicon nanowires: experiments and modeling, IEEE Trans. Electron Device, 60, 2747, 10.1109/TED.2013.2274493
Buttner, 2006, Retarded oxidation of Si nanowires, Appl. Phys. Lett., 89, 10.1063/1.2424297
Krzeminski, 2012, Understanding of the retarded oxidation effects in silicon nanostructures, Appl. Phys. Lett., 100, 10.1063/1.4729410
Liu, 1993, Self-limiting oxidation of Si nanowires, J. Vac. Sci. Technol. B, 11, 2532, 10.1116/1.586661
Liu, 1994, Self-limiting oxidation for fabricating sub-5 nm silicon nanowires, Appl. Phys. Lett., 64, 1383, 10.1063/1.111914
Shir, 2006, Oxidation of silicon nanowires, J. Vac. Sci. Technol. B, 24, 1333, 10.1116/1.2198847
Vaccaro, 2016, Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water, J. Appl. Phys., 120, 10.1063/1.4957219
Fazzini, 2011, Modeling stress retarded self-limiting oxidation of suspended silicon nanowires for the development of silicon nanowire-based nanodevices, J. Appl. Phys., 110, 10.1063/1.3611420
Li, 2016, Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation, Nanotechnology, 27, 10.1088/0957-4484/27/16/165303
Deal, 1965, General relationship for the thermal oxidation of silicon, J. Appl. Phys., 36, 3770, 10.1063/1.1713945
Kao, 1987, Two-dimensional thermal oxidation of silicon—I. Experiments, IEEE Trans. Electr. Dev., 34, 1008, 10.1109/T-ED.1987.23037
Okada, 1991, Oxidation property of silicon small particles, Appl. Phys. Lett., 58, 1662, 10.1063/1.105129
Kao, 1988, Two-dimensional thermal oxidation of silicon—II. Modeling stress effects in wet oxides, IEEE Trans. Electron Device, 35, 25, 10.1109/16.2412
Coffin, 2006, Oxidation of Si nanocrystals fabricated by ultralow-energy ion implantation in thin SiO2 layers, J. Appl. Phys., 99, 10.1063/1.2171785
Bongiorno, 2004, Reaction of the oxygen molecule at the Si(100)-SiO2 interface during silicon oxidation, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.086102
Watanabe, 2004, SiO2/Si interface structure and its formation studied by large-scale molecular dynamics simulation, Appl. Surf. Sci., 237, 125, 10.1016/S0169-4332(04)00989-4
Awaji, 1999, In situ observation of epitaxial microcrystals in thermally grown SiO2 on Si (100), Appl. Phys. Lett., 74, 2669, 10.1063/1.123953
Watanabe, 2006, New linear-parabolic rate equation for thermal oxidation of silicon, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.196102
Cui, 2009, Size-dependent oxidation behavior for the anomalous initial thermal oxidation process of Si, Appl. Phys. Lett., 94, 10.1063/1.3089794
Cui, 2008, Origin of self-limiting oxidation of Si nanowires, Nano Lett., 8, 2731, 10.1021/nl8011853
Ciacchi, 2005, First-principles molecular-dynamics study of native oxide growth on Si (001), Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.196101
Pamungkas, 2011, Reactive molecular dynamics simulation of early stage of dry oxidation of Si (100) surface, J. Appl. Phys., 110, 10.1063/1.3632968
Dumpala, 2015, Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation, Appl. Phys. Lett., 106, 10.1063/1.4905442
Thangala, 2007, Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires, Small, 3, 890, 10.1002/smll.200600689
Pasquarello, 1998, Interface structure between silicon and its oxide by first-principles molecular dynamics, Nature, 396, 58, 10.1038/23908
Bongiorno, 2004, Multiscale modeling of oxygen diffusion through the oxide during silicon oxidation, Phys. Rev. B, 70, 10.1103/PhysRevB.70.195312
Lebowitz, 1982, Microscopic basis for Fick’s law for self-diffusion, J. Stat. Phys., 28, 539, 10.1007/BF01008323
Xu, 2015, Transport diffusion in one dimensional molecular systems: Power law and validity of Fick’s law, AIP Adv., 5, 10.1063/1.4935186
Gubbala, 2007, Nanowire-basedelectrochromicdevices, Sol. Energy Mater. Sol. Cells, 91, 813, 10.1016/j.solmat.2007.01.016
Zhu, 2003, Crystalline WO3 nanowires synthesized by templating method, Chem. Phys. Lett., 377, 317, 10.1016/S0009-2614(03)01206-5
Baek, 2007, Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder, J. Phys. Chem. C, 111, 1213, 10.1021/jp0659857
You, 2010, Thermal oxidation of polycrystalline tungsten nanowire, J. Appl. Phys., 108, 10.1063/1.3504248
Renault, 1998, Poisson’s ratio measurement in tungsten thin films combining an X-ray diffractometer with in situ tensile tester, Appl. Phys. Lett., 73, 1952, 10.1063/1.122332