Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires

Theoretical and Applied Mechanics Letters - Tập 6 - Trang 195-199 - 2016
Mingchao Liu1,2, Peng Jin1, Zhiping Xu1, Dorian A.H. Hanaor2, Yixiang Gan2, Changqing Chen1
1Department of Engineering Mechanics, CNMM & AML, Tsinghua University, Beijing 100084, China
2School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia

Tài liệu tham khảo

Cui, 2001, Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science, 291, 851, 10.1126/science.291.5505.851 Hayden, 2005, Core–shell nanowire light-emitting diodes, Adv. Mater., 17, 701, 10.1002/adma.200401235 Wu, 2012, Photoelectrochemical responses of silicon nanowire arrays for light detection, Chem. Phys. Lett., 538, 102, 10.1016/j.cplett.2012.04.046 Peng, 2013, Silicon nanowires for advanced energy conversion and storage, Nano Today, 8, 75, 10.1016/j.nantod.2012.12.009 Yang, 2015, Entropy change-induced elastic softening of lithiated materials, Theor. Appl. Mech. Lett., 5, 255, 10.1016/j.taml.2015.09.003 Marcus, 1982, The oxidation of shaped silicon surfaces, J. Electrochem. Soc., 129, 1278, 10.1149/1.2124118 Zhao, 2004, Quantum confinement and electronic properties of silicon nanowires, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.236805 Ma, 2010, Modeling of stress-retarded thermal oxidation of nonplanar silicon structures for realization of nanoscale devices, IEEE Electron Device Lett., 31, 719, 10.1109/LED.2010.2047375 Han, 2015, Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma, Appl. Phys. Lett., 106 Han, 2013, Modelling and engineering of stress based controlled oxidation effects for silicon nanostructure patterning, Nanotechnology, 24, 10.1088/0957-4484/24/49/495301 Fan, 2013, Two-dimensional self-limiting wet oxidation of silicon nanowires: experiments and modeling, IEEE Trans. Electron Device, 60, 2747, 10.1109/TED.2013.2274493 Buttner, 2006, Retarded oxidation of Si nanowires, Appl. Phys. Lett., 89, 10.1063/1.2424297 Krzeminski, 2012, Understanding of the retarded oxidation effects in silicon nanostructures, Appl. Phys. Lett., 100, 10.1063/1.4729410 Liu, 1993, Self-limiting oxidation of Si nanowires, J. Vac. Sci. Technol. B, 11, 2532, 10.1116/1.586661 Liu, 1994, Self-limiting oxidation for fabricating sub-5 nm silicon nanowires, Appl. Phys. Lett., 64, 1383, 10.1063/1.111914 Shir, 2006, Oxidation of silicon nanowires, J. Vac. Sci. Technol. B, 24, 1333, 10.1116/1.2198847 Vaccaro, 2016, Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water, J. Appl. Phys., 120, 10.1063/1.4957219 Fazzini, 2011, Modeling stress retarded self-limiting oxidation of suspended silicon nanowires for the development of silicon nanowire-based nanodevices, J. Appl. Phys., 110, 10.1063/1.3611420 Li, 2016, Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation, Nanotechnology, 27, 10.1088/0957-4484/27/16/165303 Deal, 1965, General relationship for the thermal oxidation of silicon, J. Appl. Phys., 36, 3770, 10.1063/1.1713945 Kao, 1987, Two-dimensional thermal oxidation of silicon—I. Experiments, IEEE Trans. Electr. Dev., 34, 1008, 10.1109/T-ED.1987.23037 Okada, 1991, Oxidation property of silicon small particles, Appl. Phys. Lett., 58, 1662, 10.1063/1.105129 Kao, 1988, Two-dimensional thermal oxidation of silicon—II. Modeling stress effects in wet oxides, IEEE Trans. Electron Device, 35, 25, 10.1109/16.2412 Coffin, 2006, Oxidation of Si nanocrystals fabricated by ultralow-energy ion implantation in thin SiO2 layers, J. Appl. Phys., 99, 10.1063/1.2171785 Bongiorno, 2004, Reaction of the oxygen molecule at the Si(100)-SiO2 interface during silicon oxidation, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.086102 Watanabe, 2004, SiO2/Si interface structure and its formation studied by large-scale molecular dynamics simulation, Appl. Surf. Sci., 237, 125, 10.1016/S0169-4332(04)00989-4 Awaji, 1999, In situ observation of epitaxial microcrystals in thermally grown SiO2 on Si (100), Appl. Phys. Lett., 74, 2669, 10.1063/1.123953 Watanabe, 2006, New linear-parabolic rate equation for thermal oxidation of silicon, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.196102 Cui, 2009, Size-dependent oxidation behavior for the anomalous initial thermal oxidation process of Si, Appl. Phys. Lett., 94, 10.1063/1.3089794 Cui, 2008, Origin of self-limiting oxidation of Si nanowires, Nano Lett., 8, 2731, 10.1021/nl8011853 Ciacchi, 2005, First-principles molecular-dynamics study of native oxide growth on Si (001), Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.196101 Pamungkas, 2011, Reactive molecular dynamics simulation of early stage of dry oxidation of Si (100) surface, J. Appl. Phys., 110, 10.1063/1.3632968 Dumpala, 2015, Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation, Appl. Phys. Lett., 106, 10.1063/1.4905442 Thangala, 2007, Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires, Small, 3, 890, 10.1002/smll.200600689 Pasquarello, 1998, Interface structure between silicon and its oxide by first-principles molecular dynamics, Nature, 396, 58, 10.1038/23908 Bongiorno, 2004, Multiscale modeling of oxygen diffusion through the oxide during silicon oxidation, Phys. Rev. B, 70, 10.1103/PhysRevB.70.195312 Lebowitz, 1982, Microscopic basis for Fick’s law for self-diffusion, J. Stat. Phys., 28, 539, 10.1007/BF01008323 Xu, 2015, Transport diffusion in one dimensional molecular systems: Power law and validity of Fick’s law, AIP Adv., 5, 10.1063/1.4935186 Gubbala, 2007, Nanowire-basedelectrochromicdevices, Sol. Energy Mater. Sol. Cells, 91, 813, 10.1016/j.solmat.2007.01.016 Zhu, 2003, Crystalline WO3 nanowires synthesized by templating method, Chem. Phys. Lett., 377, 317, 10.1016/S0009-2614(03)01206-5 Baek, 2007, Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder, J. Phys. Chem. C, 111, 1213, 10.1021/jp0659857 You, 2010, Thermal oxidation of polycrystalline tungsten nanowire, J. Appl. Phys., 108, 10.1063/1.3504248 Renault, 1998, Poisson’s ratio measurement in tungsten thin films combining an X-ray diffractometer with in situ tensile tester, Appl. Phys. Lett., 73, 1952, 10.1063/1.122332