Two-dimensional layered MoS2: rational design, properties and electrochemical applications

Energy and Environmental Science - Tập 9 Số 4 - Trang 1190-1209
Gong Zhang1,2,3,4,5, Huijuan Liu1,2,3,4,6, Jiuhui Qu1,2,3,4,6, Jinghong Li7,8,2,9,10
1Beijing 100085
2China
3Chinese Academy of sciences
4Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
5University of Chinese Academy of Sciences, Beijing 100039, China
6Research Center for Eco-Environmental Sciences
7Beijing 100084
8Beijing Key Laboratory for Microanalytical Methods and Instrumentation
9Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
10 Tsinghua University

Tóm tắt

Nanostructured MoS2 materials and their potential applications in energy conversion and storage devices.

Từ khóa


Tài liệu tham khảo

Wang, 2011, Chem. Rev., 111, 7625, 10.1021/cr100060r

Sahoo, 2012, Adv. Mater., 24, 4203, 10.1002/adma.201104971

Habas, 2010, Chem. Rev., 110, 6571, 10.1021/cr100191d

Kubacka, 2012, Chem. Rev., 112, 1555, 10.1021/cr100454n

Gratzel, 2001, Nature, 414, 338, 10.1038/35104607

Li, 2009, Adv. Mater., 21, 4593, 10.1002/adma.200901710

Bruce, 2008, Angew. Chem., Int. Ed., 47, 2930, 10.1002/anie.200702505

Naoi, 2013, Acc. Chem. Res., 46, 1075, 10.1021/ar200308h

Karunadasa, 2012, Science, 335, 698, 10.1126/science.1215868

Zhu, 2014, Angew. Chem., Int. Ed., 53, 2152, 10.1002/anie.201308354

Gourmelon, 1997, Sol. Energy Mater. Sol. Cells, 46, 115, 10.1016/S0927-0248(96)00096-7

Radisavljevic, 2011, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279

Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Kong, 2013, Nano Lett., 13, 1341, 10.1021/nl400258t

Huang, 2013, Chem. Soc. Rev., 42, 1934, 10.1039/c2cs35387c

Han, 2012, J. Mater. Chem., 22, 25340, 10.1039/c2jm34979e

Laursen, 2012, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j

Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

McKone, 2011, Energy Environ. Sci., 4, 3573, 10.1039/c1ee01488a

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Butler, 2013, ACS Nano, 7, 2898, 10.1021/nn400280c

Mak, 2012, Nat. Nanotechnol., 7, 494, 10.1038/nnano.2012.96

Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b

Hong, 2014, Nat. Nanotechnol., 9, 682, 10.1038/nnano.2014.167

Roy, 2013, Nat. Nanotechnol., 8, 826, 10.1038/nnano.2013.206

Gong, 2014, Nat. Mater., 13, 1135, 10.1038/nmat4091

Mann, 2014, Adv. Mater., 26, 1399, 10.1002/adma.201304389

Chang, 2011, Chem. Commun., 47, 4252, 10.1039/c1cc10631g

Hwang, 2011, Nano Lett., 11, 4826, 10.1021/nl202675f

Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945

Liu, 2013, J. Phys. Chem. C, 117, 12949, 10.1021/jp4009652

Cho, 2015, ACS Appl. Mater. Interfaces, 7, 2952, 10.1021/am508535x

Sarkar, 2014, ACS Nano, 8, 3992, 10.1021/nn5009148

Xie, 2014, ACS Nano, 8, 5633, 10.1021/nn4066473

Wang, 2013, Anal. Chem., 85, 10289, 10.1021/ac402114c

Lin, 2014, Nano Lett., 14, 5569, 10.1021/nl501988y

Zhang, 2015, Angew. Chem., Int. Ed., 54, 5425, 10.1002/anie.201501071

Li, 2012, Small, 8, 682, 10.1002/smll.201101958

Li, 2013, Small, 9, 1974, 10.1002/smll.201202919

Joensen, 1986, Mater. Res. Bull., 21, 457, 10.1016/0025-5408(86)90011-5

Zeng, 2012, Angew. Chem., Int. Ed., 51, 9052, 10.1002/anie.201204208

Wang, 2014, Small, 10, 2165, 10.1002/smll.201303711

Coleman, 2011, Science, 331, 568, 10.1126/science.1194975

Zhang, 2013, Adv. Mater., 25, 3456, 10.1002/adma.201301244

Schmidt, 2014, Nano Lett., 14, 1909, 10.1021/nl4046922

Luo, 2008, Mater. Lett., 62, 3558, 10.1016/j.matlet.2008.03.050

Novoselov, 2005, Proc. Natl. Acad. Sci. U. S. A., 102, 10451, 10.1073/pnas.0502848102

Liu, 2013, Nat. Commun., 4, 1776, 10.1038/ncomms2803

Ghatak, 2011, ACS Nano, 5, 7707, 10.1021/nn202852j

Lee, 2010, Science, 328, 76, 10.1126/science.1184167

Zeng, 2011, Angew. Chem., Int. Ed., 50, 11093, 10.1002/anie.201106004

O'Neill, 2012, Chem. Mater., 24, 2414, 10.1021/cm301515z

Ou, 2014, Nano Lett., 14, 857, 10.1021/nl4042356

Zhou, 2011, Angew. Chem., Int. Ed., 50, 10839, 10.1002/anie.201105364

Smith, 2011, Adv. Mater., 23, 3944, 10.1002/adma.201102584

Guan, 2015, J. Am. Chem. Soc., 137, 6152, 10.1021/jacs.5b02780

Ji, 2013, Nano Lett., 13, 3870, 10.1021/nl401938t

Shi, 2014, ACS Nano, 8, 10196, 10.1021/nn503211t

Najmaei, 2013, Nat. Mater., 12, 754, 10.1038/nmat3673

Lee, 2012, Adv. Mater., 24, 2320, 10.1002/adma.201104798

Feldman, 1995, Science, 267, 222, 10.1126/science.267.5195.222

Margulis, 1993, Nature, 365, 113, 10.1038/365113b0

Shi, 2014, ACS Nano, 8, 10196, 10.1021/nn503211t

Zhan, 2012, Small, 8, 966, 10.1002/smll.201102654

Chen, 2001, Chem. Mater., 13, 802, 10.1021/cm000517+

Yan, 2013, ACS Appl. Mater. Interfaces, 5, 12794, 10.1021/am404843b

Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685

Cai, 2015, J. Am. Chem. Soc., 137, 2622, 10.1021/ja5120908

Gao, 2015, Nat. Commun., 6, 5982, 10.1038/ncomms6982

Liu, 2012, Nano Lett., 12, 1538, 10.1021/nl2043612

Beal, 1972, J. Phys. C: Solid State Phys., 5, 3540, 10.1088/0022-3719/5/24/016

Xu, 2015, Nano Res., 8, 2946, 10.1007/s12274-015-0799-6

Voiry, 2015, Chem. Soc. Rev., 44, 2702, 10.1039/C5CS00151J

Voiry, 2015, Nat. Chem., 7, 45, 10.1038/nchem.2108

Eda, 2012, ACS Nano, 6, 7311, 10.1021/nn302422x

Lin, 2014, Nat. Nanotechnol., 9, 391, 10.1038/nnano.2014.64

Mattheiss, 1973, Phys. Rev. B: Solid State, 8, 3719, 10.1103/PhysRevB.8.3719

Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589

Splendiani, 2010, Nano Lett., 10, 1271, 10.1021/nl903868w

Tongay, 2012, Nano Lett., 12, 5576, 10.1021/nl302584w

Zhao, 2013, ACS Nano, 7, 791, 10.1021/nn305275h

Verble, 1970, Phys. Rev. Lett., 25, 362, 10.1103/PhysRevLett.25.362

Lee, 2010, ACS Nano, 4, 2695, 10.1021/nn1003937

Bollinger, 2001, Phys. Rev. Lett., 87, 196803, 10.1103/PhysRevLett.87.196803

Liu, 2012, Nano Lett., 12, 1538, 10.1021/nl2043612

Shi, 2012, Nano Lett., 12, 2784, 10.1021/nl204562j

Wang, 2013, Nano Lett., 13, 3426, 10.1021/nl401944f

Tenne, 2010, Chem. Soc. Rev., 39, 1423, 10.1039/B901466G

Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439

Chung, 2014, Nanoscale, 6, 2131, 10.1039/C3NR05228A

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s

Heising, 1999, J. Am. Chem. Soc., 121, 11720, 10.1021/ja991644d

Faber, 2014, Energy Environ. Sci., 7, 3519, 10.1039/C4EE01760A

Xie, 2013, J. Am. Chem. Soc., 135, 17881, 10.1021/ja408329q

Mocatta, 2011, Science, 332, 77, 10.1126/science.1196321

Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087

Yan, 2013, Chem. Commun., 49, 4884, 10.1039/c3cc41031e

Tsai, 2014, Nano Lett., 14, 1381, 10.1021/nl404444k

Liang, 2013, J. Am. Chem. Soc., 135, 2013, 10.1021/ja3089923

Li, 2014, Nano Lett., 14, 1228, 10.1021/nl404108a

Lai, 2012, Energy Environ. Sci., 5, 7936, 10.1039/c2ee21802j

Wang, 2014, ACS Nano, 8, 4940, 10.1021/nn500959v

Merki, 2011, Energy Environ. Sci., 4, 3878, 10.1039/c1ee01970h

Parsons, 1958, Trans. Faraday Soc., 54, 1053, 10.1039/tf9585401053

Kibsgaard, 2014, Angew. Chem., Int. Ed., 53, 14433, 10.1002/anie.201408222

Zhang, 2015, Energy Environ. Sci., 8, 862, 10.1039/C4EE03240C

Kanda, 2011, J. Colloid Interface Sci., 354, 607, 10.1016/j.jcis.2010.11.007

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Ding, 2014, J. Am. Chem. Soc., 136, 8504, 10.1021/ja5025673

Shirane, 1950, Phys. Rev., 80, 1105, 10.1103/PhysRev.80.1105

Zhang, 1998, Science, 280, 2101, 10.1126/science.280.5372.2101

Lee, 2008, Science, 321, 385, 10.1126/science.1157996

Wu, 2014, Nature, 514, 470, 10.1038/nature13792

Stephenson, 2014, Energy Environ. Sci., 7, 209, 10.1039/C3EE42591F

Wang, 2007, J. Phys. Chem. C, 111, 1675, 10.1021/jp066655p

Palacin, 2009, Chem. Soc. Rev., 38, 2565, 10.1039/b820555h

Du, 2010, Chem. Commun., 46, 1106, 10.1039/B920277C

Zhou, 2013, Chem. Commun., 49, 1838, 10.1039/c3cc38780a

Chang, 2011, ACS Nano, 5, 4720, 10.1021/nn200659w

Xu, 2014, Adv. Energy Mater., 4, 1400902, 10.1002/aenm.201400902

Xu, 2014, Nanoscale, 6, 5245, 10.1039/C3NR06736J

Liu, 2012, Adv. Energy Mater., 2, 970, 10.1002/aenm.201200087

Yu, 2014, J. Mater. Chem. A, 2, 4551, 10.1039/C3TA14744D

B. E. Conway , Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, 1999

Augustyn, 2013, Nat. Mater., 12, 518, 10.1038/nmat3601

Soon, 2007, Electrochem. Solid-State Lett., 10, A250, 10.1149/1.2778851

Acerce, 2015, Nat. Nanotechnol., 10, 313, 10.1038/nnano.2015.40

Yang, 2014, Adv. Mater., 26, 8163, 10.1002/adma.201402847

Cao, 2013, Small, 9, 2905, 10.1002/smll.201203164

Wang, 2014, J. Mater. Chem. A, 2, 15958, 10.1039/C4TA03044C

Ma, 2014, Mater. Lett., 132, 291, 10.1016/j.matlet.2014.06.108

Ilanchezhiyan, 2015, J. Alloys Compd., 634, 104, 10.1016/j.jallcom.2015.02.082

Javed, 2015, J. Power Sources, 285, 63, 10.1016/j.jpowsour.2015.03.079

Lu, 2013, Angew. Chem., 52, 1882, 10.1002/anie.201203201

Zhu, 2010, Adv. Mater., 22, 3906, 10.1002/adma.201001068

da Silveira Firmiano, 2014, Adv. Energy Mater., 4, 1301380, 10.1002/aenm.201301380

Bissett, 2015, ACS Appl. Mater. Interfaces, 7, 17388, 10.1021/acsami.5b04672

Huang, 2014, Energy, 67, 234, 10.1016/j.energy.2013.12.051

Huang, 2015, J. Electroanal. Chem., 752, 33, 10.1016/j.jelechem.2015.06.005

Zhao, 2013, Energy Environ. Sci., 6, 2856, 10.1039/c3ee40997j

Huang, 2013, Electrochim. Acta, 109, 587, 10.1016/j.electacta.2013.07.168

Ma, 2013, J. Power Sources, 229, 72, 10.1016/j.jpowsour.2012.11.088

Yin, 2012, ACS Nano, 6, 74, 10.1021/nn2024557

Xia, 2009, Nat. Nanotechnol., 4, 839, 10.1038/nnano.2009.292

Lopez-Sanchez, 2013, Nat. Nanotechnol., 8, 497, 10.1038/nnano.2013.100

Li, 2012, Small, 8, 63, 10.1002/smll.201101016

Perkins, 2013, Nano Lett., 13, 668, 10.1021/nl3043079

Huang, 2014, J. Hazard. Mater., 276, 207, 10.1016/j.jhazmat.2014.05.037