Two dimensional ensemble hashing for visual tracking

Neurocomputing - Tập 171 - Trang 1387-1400 - 2016
Chao Ma1, Chuancai Liu1, Furong Peng1
1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China

Tài liệu tham khảo

Y. Wu, J. Lim, M.-H. Yang, Online object tracking: a benchmark, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2411–2418. Chen, 2015, Multi-target tracking in non-overlapping cameras using a reference set, IEEE Sens. J., 15, 2692, 10.1109/JSEN.2015.2392781 L. Zhang, L. van der Maaten, Structure preserving object tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1838–1845. X. Mei, H. Ling, Robust visual tracking using l1 minimization, in: IEEE International Conference on Computer Vision, 2009, pp. 1436–1443. C. Bao, Y. Wu, H. Ling, H. Ji, Real time robust l1 tracker using accelerated proximal gradient approach, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1830–1837. W. Zhong, H. Lu, M.-H. Yang, Robust object tracking via sparsity-based collaborative model, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1838–1845. B. Liu, J. Huang, L. Yang, C. Kulikowsk, Robust tracking using local sparse appearance model and k-selection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 1313–1320. T. Zhang, B. Ghanem, S. Liu, N. Ahuja, Robust visual tracking via multi-task sparse learning, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2042–2049. D. Wang, H. Lu, M.-H. Yang, Least soft-threshold squares tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2371–2378. S. He, Q. Yang, R.W. Lau, J. Wang, M.-H. Yang, Visual tracking via locality sensitive histograms, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2427–2434. S. Wang, H. Lu, F. Yang, M.-H. Yang, Superpixel tracking, in: IEEE International Conference on Computer Vision, 2011, pp. 1323–1330. Yang, 2014, Robust superpixel tracking, IEEE Trans. Image Process., 23, 1639, 10.1109/TIP.2014.2300823 S. Oron, A. Bar-Hillel, D. Levi, S. Avidan, Locally orderless tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1940–1947. Yuan, 2014, Robust superpixel tracking via depth fusion, IEEE Trans. Circuits Syst. Video Technol., 24, 15, 10.1109/TCSVT.2013.2273631 D. Chen, Z. Yuan, Y. Wu, G. Zhang, N. Zheng, Constructing adaptive complex cells for robust visual tracking, in: IEEE International Conference on Computer Vision, 2013, pp. 1113–1120. S. Hare, A. Saffari, P.H. Torr, Struck: structured output tracking with kernels, in: IEEE International Conference on Computer Vision, 2011, pp. 263–270. Babenko, 2011, Robust object tracking with online multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell., 33, 1619, 10.1109/TPAMI.2010.226 Z. Kalal, J. Matas, K. Mikolajczyk, Pn learning: bootstrapping binary classifiers by structural constraints, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 49–56. L. Sevilla-Lara, E. Learned-Miller, Distribution fields for tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1910–1917. Li, 2013, Visual tracking by proto-objects, Pattern Recognit., 46, 2187, 10.1016/j.patcog.2013.01.020 Su, 2014, Abrupt motion tracking using a visual saliency embedded particle filter, Pattern Recognit., 47, 1826, 10.1016/j.patcog.2013.11.028 Ross, 2008, Incremental learning for robust visual tracking, Int. J. Comput. Vis., 77, 125, 10.1007/s11263-007-0075-7 Zhang, 2014, Fast compressive tracking, IEEE Trans. Pattern Anal. Mach. Intell., 36, 2002, 10.1109/TPAMI.2014.2315808 X. Li, C. Shen, A. Dick, A. van den Hengel, Learning compact binary codes for visual tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2419–2426. Kwon, 2014, A geometric particle filter for template-based visual tracking, IEEE Trans. Pattern Anal. Mach. Intell., 36, 625, 10.1109/TPAMI.2013.170 Gao, 2014, Symbiotic tracker ensemble toward A unified tracking framework, IEEE Trans. Circuits Syst. Video Technol., 24, 1122, 10.1109/TCSVT.2014.2302366 J. Kwon, K.M. Lee, Visual tracking decomposition, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2010, pp. 1269–1276. Zhang, 2014, Graph-embedding-based learning for robust object tracking, IEEE Trans. Ind. Electron., 61, 1072, 10.1109/TIE.2013.2258306 K. Zhang, L. Zhang, M.-H. Yang, Real-time compressive tracking, in: European Conference on Computer Vision, 2012, pp. 864–877. Nie, 2014, Single/cross-camera multiple-person tracking by graph matching, Neurocomputing, 139, 220, 10.1016/j.neucom.2014.02.040 Bai, 2015, Learning local appearances with sparse representation for robust and fast visual tracking, IEEE Trans. Cybern., 45, 663, 10.1109/TCYB.2014.2332279 Kalal, 2012, Tracking-learning-detection, IEEE Trans. Pattern Anal. Mach. Intell., 34, 1409, 10.1109/TPAMI.2011.239 J. Lim, D.A. Ross, R.-S. Lin, M.-H. Yang, Incremental learning for visual tracking, in: Advances in Neural Information Processing Systems, 2004, pp. 793–800. G. Li, D. Liang, Q. Huang, S. Jiang, W. Gao, Object tracking using incremental 2d-lda learning and Bayes inference, in: IEEE International Conference on Image Processing, 2008, pp. 1568–1571. A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via hashing, in: International Conference on Very Large Databases, 2000, pp. 518–529. M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: ACM Twentieth Annual Symposium on Computational Geometry, 2004, pp. 253–262. Kulis, 2009, Fast similarity search for learned metrics, IEEE Trans. Pattern Anal. Mach. Intell., 31, 2143, 10.1109/TPAMI.2009.151 B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image search, in: IEEE International Conference on Computer Vision, 2009, pp. 2130–2137. M. Raginsky, S. Lazebnik, Locality-sensitive binary codes from shift-invariant kernels, in: Advances in neural information processing systems, 2009, pp. 1509–1517. Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: Advances in neural information processing systems, 2009, pp. 1753–1760. W. Liu, J. Wang, S. Kumar, S.-F. Chang, Hashing with graphs, in: Twenty-eighth International Conference on Machine Learning, 2011, pp. 1–8. Strecha, 2012, Ldahash, IEEE Trans. Pattern Anal. Mach. Intell., 34, 66, 10.1109/TPAMI.2011.103 Wang, 2012, Semi-supervised hashing for large-scale search, IEEE Trans. Pattern Anal. Mach. Intell., 34, 2393, 10.1109/TPAMI.2012.48 B. Zhao, E. Xing, Hierarchical feature hashing for fast dimensionality reduction, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2043–2050. Y. Weiss, R. Fergus, A. Torralba, Multidimensional spectral hashing, in: European Conference on Computer Vision, 2012, pp. 340–353. Gong, 2013, Iterative quantization, IEEE Trans. Pattern Anal. Mach. Intell., 35, 2916, 10.1109/TPAMI.2012.193 Y. Kang, S. Kim, S. Choi, Deep learning to hash with multiple representations., in: International Conference on Data Mining, 2012, pp. 930–935. Hinton, 2011, Discovering binary codes for documents by learning deep generative models, Top. Cogn. Sci., 3, 74, 10.1111/j.1756-8765.2010.01109.x K. He, F. Wen, J. Sun, K-means hashing: an affinity-preserving quantization method for learning binary compact codes, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2938–2945. Z. Kang, L. Hongtao, M. Jincheng, Locality preserving hashing, in: AAAI Conference on Artificial Intelligence, 2014, pp. 2874–2880. F. Shen, C. Shen, Q. Shi, A. Van Den Hengel, Z. Tang, Inductive hashing on manifolds, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1562–1569. G. Irie, Z. Li, X.-M. Wu, S.-F. Chang, Locally linear hashing for extracting non-linear manifolds, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2123–2130. Y. Lin, R. Jin, D. Cai, S. Yan, X. Li, Compressed hashing, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 446–451. X. Liu, J. He, C. Deng, B. Lang, Collaborative hashing, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2147–2154. Q. Shi, H. Li, C. Shen, Rapid face recognition using hashing, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 2753–2760. G. Ye, D. Liu, J. Wang, S.-F. Chang, Large-scale video hashing via structure learning, in: IEEE International Conference on Computer Vision, 2013, pp. 2272–2279. Wiskott, 2002, Slow feature analysis, Neural Comput., 14, 715, 10.1162/089976602317318938 Huang, 2011, Nonlinear dimensionality reduction using a temporal coherence principle, Inf. Sci., 181, 3284, 10.1016/j.ins.2011.04.001