Two dimensional ensemble hashing for visual tracking
Tài liệu tham khảo
Y. Wu, J. Lim, M.-H. Yang, Online object tracking: a benchmark, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2411–2418.
Chen, 2015, Multi-target tracking in non-overlapping cameras using a reference set, IEEE Sens. J., 15, 2692, 10.1109/JSEN.2015.2392781
L. Zhang, L. van der Maaten, Structure preserving object tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1838–1845.
X. Mei, H. Ling, Robust visual tracking using l1 minimization, in: IEEE International Conference on Computer Vision, 2009, pp. 1436–1443.
C. Bao, Y. Wu, H. Ling, H. Ji, Real time robust l1 tracker using accelerated proximal gradient approach, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1830–1837.
W. Zhong, H. Lu, M.-H. Yang, Robust object tracking via sparsity-based collaborative model, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1838–1845.
B. Liu, J. Huang, L. Yang, C. Kulikowsk, Robust tracking using local sparse appearance model and k-selection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 1313–1320.
T. Zhang, B. Ghanem, S. Liu, N. Ahuja, Robust visual tracking via multi-task sparse learning, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2042–2049.
D. Wang, H. Lu, M.-H. Yang, Least soft-threshold squares tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2371–2378.
S. He, Q. Yang, R.W. Lau, J. Wang, M.-H. Yang, Visual tracking via locality sensitive histograms, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2427–2434.
S. Wang, H. Lu, F. Yang, M.-H. Yang, Superpixel tracking, in: IEEE International Conference on Computer Vision, 2011, pp. 1323–1330.
Yang, 2014, Robust superpixel tracking, IEEE Trans. Image Process., 23, 1639, 10.1109/TIP.2014.2300823
S. Oron, A. Bar-Hillel, D. Levi, S. Avidan, Locally orderless tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1940–1947.
Yuan, 2014, Robust superpixel tracking via depth fusion, IEEE Trans. Circuits Syst. Video Technol., 24, 15, 10.1109/TCSVT.2013.2273631
D. Chen, Z. Yuan, Y. Wu, G. Zhang, N. Zheng, Constructing adaptive complex cells for robust visual tracking, in: IEEE International Conference on Computer Vision, 2013, pp. 1113–1120.
S. Hare, A. Saffari, P.H. Torr, Struck: structured output tracking with kernels, in: IEEE International Conference on Computer Vision, 2011, pp. 263–270.
Babenko, 2011, Robust object tracking with online multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell., 33, 1619, 10.1109/TPAMI.2010.226
Z. Kalal, J. Matas, K. Mikolajczyk, Pn learning: bootstrapping binary classifiers by structural constraints, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 49–56.
L. Sevilla-Lara, E. Learned-Miller, Distribution fields for tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1910–1917.
Li, 2013, Visual tracking by proto-objects, Pattern Recognit., 46, 2187, 10.1016/j.patcog.2013.01.020
Su, 2014, Abrupt motion tracking using a visual saliency embedded particle filter, Pattern Recognit., 47, 1826, 10.1016/j.patcog.2013.11.028
Ross, 2008, Incremental learning for robust visual tracking, Int. J. Comput. Vis., 77, 125, 10.1007/s11263-007-0075-7
Zhang, 2014, Fast compressive tracking, IEEE Trans. Pattern Anal. Mach. Intell., 36, 2002, 10.1109/TPAMI.2014.2315808
X. Li, C. Shen, A. Dick, A. van den Hengel, Learning compact binary codes for visual tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2419–2426.
Kwon, 2014, A geometric particle filter for template-based visual tracking, IEEE Trans. Pattern Anal. Mach. Intell., 36, 625, 10.1109/TPAMI.2013.170
Gao, 2014, Symbiotic tracker ensemble toward A unified tracking framework, IEEE Trans. Circuits Syst. Video Technol., 24, 1122, 10.1109/TCSVT.2014.2302366
J. Kwon, K.M. Lee, Visual tracking decomposition, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2010, pp. 1269–1276.
Zhang, 2014, Graph-embedding-based learning for robust object tracking, IEEE Trans. Ind. Electron., 61, 1072, 10.1109/TIE.2013.2258306
K. Zhang, L. Zhang, M.-H. Yang, Real-time compressive tracking, in: European Conference on Computer Vision, 2012, pp. 864–877.
Nie, 2014, Single/cross-camera multiple-person tracking by graph matching, Neurocomputing, 139, 220, 10.1016/j.neucom.2014.02.040
Bai, 2015, Learning local appearances with sparse representation for robust and fast visual tracking, IEEE Trans. Cybern., 45, 663, 10.1109/TCYB.2014.2332279
Kalal, 2012, Tracking-learning-detection, IEEE Trans. Pattern Anal. Mach. Intell., 34, 1409, 10.1109/TPAMI.2011.239
J. Lim, D.A. Ross, R.-S. Lin, M.-H. Yang, Incremental learning for visual tracking, in: Advances in Neural Information Processing Systems, 2004, pp. 793–800.
G. Li, D. Liang, Q. Huang, S. Jiang, W. Gao, Object tracking using incremental 2d-lda learning and Bayes inference, in: IEEE International Conference on Image Processing, 2008, pp. 1568–1571.
A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via hashing, in: International Conference on Very Large Databases, 2000, pp. 518–529.
M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: ACM Twentieth Annual Symposium on Computational Geometry, 2004, pp. 253–262.
Kulis, 2009, Fast similarity search for learned metrics, IEEE Trans. Pattern Anal. Mach. Intell., 31, 2143, 10.1109/TPAMI.2009.151
B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image search, in: IEEE International Conference on Computer Vision, 2009, pp. 2130–2137.
M. Raginsky, S. Lazebnik, Locality-sensitive binary codes from shift-invariant kernels, in: Advances in neural information processing systems, 2009, pp. 1509–1517.
Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: Advances in neural information processing systems, 2009, pp. 1753–1760.
W. Liu, J. Wang, S. Kumar, S.-F. Chang, Hashing with graphs, in: Twenty-eighth International Conference on Machine Learning, 2011, pp. 1–8.
Strecha, 2012, Ldahash, IEEE Trans. Pattern Anal. Mach. Intell., 34, 66, 10.1109/TPAMI.2011.103
Wang, 2012, Semi-supervised hashing for large-scale search, IEEE Trans. Pattern Anal. Mach. Intell., 34, 2393, 10.1109/TPAMI.2012.48
B. Zhao, E. Xing, Hierarchical feature hashing for fast dimensionality reduction, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2043–2050.
Y. Weiss, R. Fergus, A. Torralba, Multidimensional spectral hashing, in: European Conference on Computer Vision, 2012, pp. 340–353.
Gong, 2013, Iterative quantization, IEEE Trans. Pattern Anal. Mach. Intell., 35, 2916, 10.1109/TPAMI.2012.193
Y. Kang, S. Kim, S. Choi, Deep learning to hash with multiple representations., in: International Conference on Data Mining, 2012, pp. 930–935.
Hinton, 2011, Discovering binary codes for documents by learning deep generative models, Top. Cogn. Sci., 3, 74, 10.1111/j.1756-8765.2010.01109.x
K. He, F. Wen, J. Sun, K-means hashing: an affinity-preserving quantization method for learning binary compact codes, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2938–2945.
Z. Kang, L. Hongtao, M. Jincheng, Locality preserving hashing, in: AAAI Conference on Artificial Intelligence, 2014, pp. 2874–2880.
F. Shen, C. Shen, Q. Shi, A. Van Den Hengel, Z. Tang, Inductive hashing on manifolds, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1562–1569.
G. Irie, Z. Li, X.-M. Wu, S.-F. Chang, Locally linear hashing for extracting non-linear manifolds, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2123–2130.
Y. Lin, R. Jin, D. Cai, S. Yan, X. Li, Compressed hashing, in: IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 446–451.
X. Liu, J. He, C. Deng, B. Lang, Collaborative hashing, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2147–2154.
Q. Shi, H. Li, C. Shen, Rapid face recognition using hashing, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 2753–2760.
G. Ye, D. Liu, J. Wang, S.-F. Chang, Large-scale video hashing via structure learning, in: IEEE International Conference on Computer Vision, 2013, pp. 2272–2279.
Wiskott, 2002, Slow feature analysis, Neural Comput., 14, 715, 10.1162/089976602317318938
Huang, 2011, Nonlinear dimensionality reduction using a temporal coherence principle, Inf. Sci., 181, 3284, 10.1016/j.ins.2011.04.001