Quang phổ hai màu của DNA mạch đơn bị kích thích UV với cảm biến phát quang nanotube đơn: Giải phóng năng lượng nhanh chóng thông qua cơ chế tự ion hóa của nucleobase

Nano Research - Tập 9 - Trang 571-583 - 2016
Tetyana Ignatova1, Alexander Balaeff2, Michael Blades1, Ming Zheng3, Peter Stoeckl4, Slava V. Rotkin5
1Physics Department, Lehigh University, Bethlehem, USA
2NanoScience Technology Center, University of Central Florida, Orlando, USA
3National Institute of Standards and Technology, Gaithersburg, USA
4Department of Physics & Astronomy, University of Rochester, Rochester, USA
5Physics Department, Center for Advanced Materials & Nanotechnology and Center for Photonics & Nanoelectronics, Lehigh University, Bethlehem, USA

Tóm tắt

Quá trình tự ion hóa DNA là một quá trình cơ bản trong đó các nucleobase bị kích thích bằng tia cực tím (UV) phân tán năng lượng bằng cách chuyển tải điện tích sang môi trường mà không chịu tổn thương hóa học. Trong nghiên cứu này, các nanotube carbon đơn lớp (SWNT) được nghiên cứu như một cảm biến phát quang để nghiên cứu cơ chế và tốc độ của quá trình tự ion hóa DNA. Phép quang phổ phát quang hai màu cho phép kích thích quang riêng biệt DNA và SWNT trong miền UV và miền nhìn thấy, tương ứng. Một hiện tượng suy giảm phát quang SWNT mạnh được quan sát thấy khi bơm UV cộng hưởng với sự hấp thụ DNA, phù hợp với quá trình chuyển tải điện tích từ các trạng thái đã được kích thích của DNA sang SWNT. Các phép tính bán thực nghiệm về cấu trúc điện tử DNA-SWNT, kết hợp với lý thuyết hàm Green cho sự chuyển tải điện tích, cho thấy tốc độ tự ion hóa 20 fs, chủ yếu được chi phối bởi quá trình chuyển tải lỗ. Phân tích phương trình tỷ lệ của dữ liệu quang phổ xác nhận rằng tốc độ suy giảm bị giới hạn bởi quá trình nhiệt hóa của các hạt tải điện tự do được chuyển tới bể nanotube. Phương pháp này có tiềm năng lớn trong việc theo dõi kích thích DNA, tự ion hóa và tổn thương hóa học, cả trong môi trường sống và ngoài cơ thể.

Từ khóa

#DNA autoionization #photoluminescence #single-wall carbon nanotubes #two-color spectroscopy #charge transfer

Tài liệu tham khảo

Middleton, C. T.; de La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernández, C. E.; Kohler, B. DNA excited-state dynamics: From single bases to the double helix. Annu. Rev. Phys. Chem. 2009, 60, 217–239. Adhikary, A.; Malkhasian, A. Y. S.; Collins, S.; Koppen, J.; Becker, D.; Sevilla, M. D. UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures. Nucleic Acids Res. 2005, 33, 5553–5564. Crespo-Hernández, C. E.; Cohen, B.; Hare, P. M.; Kohler, B. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 2004, 104, 1977–2020. Zhang, Y. Y.; Dood, J.; Beckstead, A. A.; Li, X.-B.; Nguyen, K. V.; Burrows, C. J.; Improta, R.; Kohler, B. Photoinduced electron transfer in DNA: Charge shift dynamics between 8-oxo-guanine anion and adenine. J. Phys. Chem. B 2015, 119, 7491–7502. Schwalb, N. K.; Temps, F. Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine. J. Am. Chem. Soc. 2007, 129, 9272–9273. Crespo-Hernández, C. E.; Arce, R. Photoionization of DNA and RNA bases, nucleosides and nucleotides through a combination of one- and two-photon pathways upon 266 nm nanosecond laser excitation. Photochem. Photobiol. 2002, 76, 259–267. Belau, L.; Wilson, K. R.; Leone, S. R.; Ahmed, M. Vacuumultraviolet photoionization studies of the microhydration of DNA bases (guanine, cytosine, adenine, and thymine). J. Phys. Chem. A 2007, 111, 7562–7568. Gu, J. D.; Leszczynski, J.; Schaefer, H. F. Interactions of electrons with bare and hydrated biomolecules: From nucleic acid bases to DNA segments. Chem. Rev. 2012, 112, 5603–5640. Pecourt, J.-M. L.; Peon, J.; Kohler, B. Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water. J. Am. Chem. Soc. 2000, 122, 9348–9349. Wang, C.-R.; Luo, T.; Lu, Q.-B. On the lifetimes and physical nature of incompletely relaxed electrons in liquid water. Phys. Chem. Chem. Phys. 2008, 10, 4463–4470. Smyth, M.; Kohano, J. Excess electron localization in solvated DNA bases. Phys. Rev. Lett. 2011, 106, 238108. Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120. Heister, E.; Brunner, E. W.; Dieckmann, G. R.; Jurewicz, I.; Dalton, A. B. Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces 2013, 5, 1870–1891. Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. J. Carbon materials for drug delivery & cancer therapy. Materials Today 2011, 14, 316–323. Kang, J. W.; Nguyen, F. T.; Lue, N.; Dasari, R. R.; Heller, D. A. Measuring uptake dynamics of multiple identifiable carbon nanotube species via high-speed confocal Raman imaging of live cells. Nano Lett. 2012, 12, 6170–6174. Chilek, J. L.; Wang, R. H.; Draper, R. K.; Pantano, P. Use of gel electrophoresis and Raman spectroscopy to characterize the effect of the electronic structure of single-walled carbon nanotubes on cellular uptake. Anal. Chem. 2014, 86, 2882–2887. Jain, A.; Homayoun, A.; Bannister, C. W.; Yum, K. Singlewalled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine. Biotechnol. J. 2015, 10, 447–459. Choi, Y.; Moody, I. S.; Sims, P. C.; Hunt, S. R.; Corso, B. L.; Perez, I.; Weiss, G. A.; Collins, P. G. Single-molecule lysozyme dynamics monitored by an electronic circuit. Science 2012, 335, 319–324. Martin, C. R.; Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2003, 2, 29–37. Zhou, W. W.; Wang, Y. Y.; Lim, T.-S.; Pham, T.; Jain, D.; Burke, P. J. Detection of single ion channel activity with carbon nanotubes. Sci. Rep. 2015, 5, 9208. Budhathoki-Uprety, J.; Jena, P. V.; Roxbury, D.; Heller, D. A. Helical polycarbodiimide cloaking of carbon nanotubes enables inter-nanotube exciton energy transfer modulation. J. Am. Chem. Soc. 2014, 136, 15545–15550. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNAassisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342. Strano, M. S.; Zheng, M.; Jagota, A.; Onoa, G. B.; Heller, D. A.; Barone, P. W.; Usrey, M. L. Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett. 2004, 4, 543–550. Lu, G.; Maragakis, P.; Kaxiras, E. Carbon nanotube interaction with DNA. Nano Lett. 2005, 5, 897–900. Heller, D. A.; Jeng, E. S.; Yeung, T.-K.; Martinez, B. M.; Moll, A. E.; Gastala, J. B.; Strano, M. S. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 2006, 311, 508–511. Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253. Khripin, C. Y.; Manohar, S.; Zheng, M.; Jagota, A. Measurement of electrostatic properties of DNA-carbon nanotube hybrids by capillary electrophoresis. J. Phys. Chem. C 2009, 113, 13616–13621. Rotkin, S. V. Electronic properties of nonideal nanotube materials: Helical symmetry breaking in DNA hybrids. Annu. Rev. Phys. Chem. 2010, 61, 241–264. Roxbury, D.; Mittal, J.; Jagota, A. Molecular-basis of singlewalled carbon nanotube recognition by single-stranded DNA. Nano Lett. 2012, 12, 1464–1469. Cherukuri, P.; Bachilo, S. M.; Litovsky, S. H.; Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004, 126, 15638–15639. Mu, B.; Zhang, J. Q.; McNicholas, T. P.; Reuel, N. F.; Kruss, S.; Strano, M. S. Recent advances in molecular recognition based on nanoengineered platforms. Acc. Chem. Res. 2014, 47, 979–988. Fabbro, A.; Bosi, S.; Ballerini, L.; Prato, M. Carbon nanotubes: Artificial nanomaterials to engineer single neurons and neuronal networks. ACS Chem. Neurosci. 2012, 3, 611–618. Calvaresi, M.; Zerbetto, F. The devil and holy water: Protein and carbon nanotube hybrids. Acc. Chem. Res. 2013, 46, 2454–2463. Mundra, R. V.; Wu, X.; Sauer, J.; Dordick, J. S.; Kane, R. S. Nanotubes in biological applications. Curr. Opin. Biotechnol. 2014, 28, 25–32. Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; Mclean, R. S.; Onoa, G. B. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545–1548. Lustig, S. R.; Jagota, A.; Khripin, C.; Zheng, M. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J. Phys. Chem. B 2005, 109, 2559–2566. Snyder, S. E.; Rotkin, S. V. Polarization component of cohesion energy in single-wall carbon nanotube-DNA complexes. JETP Lett. 2006, 84, 348–351. Alidori, S.; Asqiriba, K.; Londero, P.; Bergkvist, M.; Leona, M.; Scheinberg, D. A.; McDevitt, M. R. Deploying RNA and DNA with functionalized carbon nanotubes. J. Phys. Chem. C 2013, 117, 5982–5992. Roxbury, D.; Jagota, A.; Mittal, J. Structural characteristics of oligomeric DNA strands adsorbed onto single-walled carbon nanotubes. J. Phys. Chem. B 2013, 117, 132–140. Landry, M. P.; Vukovic, L.; Kruss, S.; Bisker, G.; Landry, A. M.; Islam, S.; Jain, R.; Schulten, K.; Strano, M. S. Comparative dynamics and sequence dependence of DNA and RNA binding to single walled carbon nanotubes. J. Phys. Chem. C 2015, 119, 10048–10058. Puller, V. I.; Rotkin, S. V. Helicity and broken symmetry of DNA-nanotube hybrids. EPL 2007, 77, 27006. Wall, A.; Ferreira, M. S. Electronic density of states of helically-wrapped carbon nanotubes. J. Phys.: Condens. Matter 2007, 19, 406227. Snyder, S. E.; Rotkin, S. V. Optical identification of a DNAwrapped carbon nanotube: Signs of helically broken symmetry. Small 2008, 4, 1284–1286. Hughes, M. E.; Brandin, E.; Golovchenko, J. A. Optical absorption of DNA-carbon nanotube structures. Nano Lett. 2007, 7, 1191–1194. Cathcart, H.; Nicolosi, V.; Hughes, J. M.; Blau, W. J.; Kelly, J. M.; Quinn, S. J.; Coleman, J. N. Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions. J. Am. Chem. Soc. 2008, 130, 12734–12744. Duque, J. G.; Pasquali, M.; Cognet, L.; Lounis, B. Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes. ACS Nano 2009, 3, 2153–2156. Fagan, J. A.; Zheng, M.; Rastogi, V.; Simpson, J. R.; Khripin, C. Y.; Silvera Batista, C. A.; Hight Walker, A. R. Analyzing surfactant structures on length and chirality resolved (6,5) single-wall carbon nanotubes by analytical ultracentrifugation. ACS Nano 2013, 7, 3373–3387. Petersen, E. J.; Tu, X. M.; Dizdaroglu, M.; Zheng, M.; Nelson, B. C. Protective roles of single-wall carbon nanotubes in ultrasonication-induced DNA base damage. Small 2013, 9, 205–208. Zhang, Y. Q.; Liu, C. R.; Balae, A.; Skourtis, S. S.; Beratan, D. N. Biological charge transfer via flickering resonance. Proc. Natl. Acad. Sci. USA 2014, 111, 10049–10054. Giese, B.; Amaudrut, J.; Köhler, A. K.; Spormann, M.; Wessely, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling. Nature 2001, 412, 318–320. Barnett, R. N.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. Charge migration in DNA: Ion-gated transport. Science 2001, 294, 567–571. Senthilkumar, K.; Grozema, F. C.; Guerra, C. F.; Bickelhaupt, F. M.; Lewis, F. D.; Berlin, Y. A.; Ratner, M. A.; Siebbeles, L. D. A. Absolute rates of hole transfer in DNA. J. Am. Chem. Soc. 2005, 127, 14894–14903. Lewis, F. D.; Wu, T. F.; Zhang, Y. F.; Letsinger, R. L.; Greenfield, S. R.; Wasielewski, M. R. Distance-dependent electron transfer in DNA hairpins. Science 1997, 277, 673–676. Genereux, J. C.; Barton, J. K. Mechanisms for DNA charge transport. Chem. Rev. 2010, 110, 1642–1662. Lewis, F. D.; Zhu, H. H.; Daublain, P.; Fiebig, T.; Raytchev, M.; Wang, Q.; Shafirovich, V. Crossover from superexchange to hopping as the mechanism for photoinduced charge transfer in DNA hairpin conjugates. J. Am. Chem. Soc. 2006, 128, 791–800. Renaud, N.; Berlin, Y. A.; Lewis, F. D.; Ratner, M. A. Between superexchange and hopping: An intermediate charge-transfer mechanism in poly(A)-poly(T) DNA hairpins. J. Am. Chem. Soc. 2013, 135, 3953–3963. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon nanotubes: Synthesis, structure, properties, and applications, Vol. 80. In Topics in Applied Physics; Springer: Berlin, Heidelberg, 2001. Ajiki, H.; Ando, T. Electronic states of carbon nanotubes. J. Phys. Soc. Jpn. 1993, 62, 1255–1266. Ignatova, T.; Najafov, H.; Ryasnyanskiy, A.; Biaggio, I.; Zheng, M.; Rotkin, S. V. Significant FRET between SWNT/DNA and rare earth ions: A signature of their spatial correlations. ACS Nano 2011, 5, 6052–6059. Jin, H.; Heller, D. A.; Strano, M. S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 2008, 8, 1577–1585. Hertel, T.; Himmelein, S.; Ackermann, T.; Stich, D.; Crochet, J. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: Single-wall carbon nanotubes. ACS Nano 2010, 4, 7161–7168. Ridley, J.; Zerner, M. An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theoret. Chim. Acta 1973, 32, 111–134. Voityuk, A. A. Intermediate neglect of differential overlap for spectroscopy. WIREs Comput. Mol. Sci. 2013, 3, 515–527. Tejerina, B.; Reimers, J. CNDO/INDO. 2014, DOI 10.4231/D3R49G96G. nanoHUB.org. https://nanohub.org/resources/3352 (accessed Sep 3, 2015). Venkatramani, R.; Keinan, S.; Balaeff, A.; Beratan, D. N. Nucleic acid charge transfer: Black, white and gray. Coord. Chem. Rev. 2011, 255, 635–648. Venkatramani, R.; Davis, K. L.; Wierzbinski, E.; Bezer, S.; Balaeff, A.; Keinan, S.; Paul, A.; Kocsis, L.; Beratan, D. N.; Achim, C. et al. Evidence for a near-resonant charge transfer mechanism for double-stranded peptide nucleic acid. J. Am. Chem. Soc. 2011, 133, 62–77. Hatcher, E.; Balaeff, A.; Keinan, S.; Venkatramani, R.; Beratan, D. N. PNA versus DNA: Effects of structural fluctuations on electronic structure and hole-transport mechanisms. J. Am. Chem. Soc. 2008, 130, 11752–11761. Fonseca, A.; Perpète, E. A.; Galet, P.; Champagne, B.; Nagy, J. B.; André, J. M.; Lambin, P.; Lucas, A. A. Quantum chemical evaluation of the knee angle in the (5,5) - (9,0) coiled carbon tubule. J. Phys. B: At. Mol. Opt. Phys. 1996, 29, 4915–4924. Voityuk, A. A. Fluctuation of the electronic coupling in DNA: Multistate versus two-state model. Chem. Phys. Lett. 2007, 439, 162–165. Voityuk, A. A. Electronic couplings and on-site energies for hole transfer in DNA: Systematic quantum mechanical/molecular dynamic study. J. Chem. Phys. 2008, 128, 115101. Thiel, W. Semiempirical quantum-chemical methods. WIREs Comput. Mol. Sci. 2014, 4, 145–147. Voityuk, A. A. Assessment of semiempirical methods for the computation of charge transfer in DNA p-stacks. Chem. Phys. Lett. 2006, 427, 177–180. Kilina, S.; Tretiak, S. Excitonic and vibrational properties of single-walled semiconducting carbon nanotubes. Adv. Funct. Mater. 2007, 17, 3405–3420. Chen, H. N.; Ratner, M. A.; Schatz, G. C. Time-dependent theory of the rate of photo-induced electron transfer. J. Phys. Chem. C 2011, 115, 18810–18821. Santoro, F.; Improta, R.; Avila, F.; Segado, M.; Lami, A. The interplay between neutral exciton and charge transfer states in single-strand polyadenine: A quantum dynamical investigation. Photochem. Photobiol. Sci. 2013, 12, 1527–1543. Tataurov, A. V.; You, Y.; Owczarzy, R. Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys. Chem. 2008, 133, 66–70.